基于基础与深度学习的图像数据增强技术的定量分析

Mohammed Ehsan Ur Rahman, Hrudheeshta Anishetty, Arjun Kumar Kollpaka, Aishwarya Yelishetty, S. Ganta
{"title":"基于基础与深度学习的图像数据增强技术的定量分析","authors":"Mohammed Ehsan Ur Rahman, Hrudheeshta Anishetty, Arjun Kumar Kollpaka, Aishwarya Yelishetty, S. Ganta","doi":"10.1109/ICSES52305.2021.9633781","DOIUrl":null,"url":null,"abstract":"Our proposed work is a research project that does quantitative analysis of various basic image manipulation techniques as processes for augmentation of image type data on the accuracy of deep learning task of hand-written digit recognition on MNIST dataset. The paper also presents a detailed comparison of various parameters such as computation burden, storage requirements for model storage, accuracy, and loss function value of the results obtained by using basic image manipulation techniques as image data augmentation techniques with those data augmentation mechanisms that are rooted in deep learning. The results that we have obtained on MNIST dataset without data augmentation applied are accuracy of 97.80% and loss of 0.320, whereas the highest accuracy was achieved by adjusting brightness as the data augmentation technique with 98.57% accuracy and 0.301 loss value. In the view of our results, we recommend that basic image manipulation-based data augmentation techniques must be used to address overfitting instead of memory or computationally expensive deep learning-based image augmentation techniques. This strategy also helps enhance the performance of various image data-based deep learning pipelines and makes these models more robust.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"40 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantitative Analysis of Basic vs. Deep Learning-based Image Data Augmentation Techniques\",\"authors\":\"Mohammed Ehsan Ur Rahman, Hrudheeshta Anishetty, Arjun Kumar Kollpaka, Aishwarya Yelishetty, S. Ganta\",\"doi\":\"10.1109/ICSES52305.2021.9633781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Our proposed work is a research project that does quantitative analysis of various basic image manipulation techniques as processes for augmentation of image type data on the accuracy of deep learning task of hand-written digit recognition on MNIST dataset. The paper also presents a detailed comparison of various parameters such as computation burden, storage requirements for model storage, accuracy, and loss function value of the results obtained by using basic image manipulation techniques as image data augmentation techniques with those data augmentation mechanisms that are rooted in deep learning. The results that we have obtained on MNIST dataset without data augmentation applied are accuracy of 97.80% and loss of 0.320, whereas the highest accuracy was achieved by adjusting brightness as the data augmentation technique with 98.57% accuracy and 0.301 loss value. In the view of our results, we recommend that basic image manipulation-based data augmentation techniques must be used to address overfitting instead of memory or computationally expensive deep learning-based image augmentation techniques. This strategy also helps enhance the performance of various image data-based deep learning pipelines and makes these models more robust.\",\"PeriodicalId\":6777,\"journal\":{\"name\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"volume\":\"40 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSES52305.2021.9633781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出的工作是一个研究项目,对各种基本的图像处理技术进行定量分析,作为在MNIST数据集上增强图像类型数据对手写数字识别深度学习任务准确性的过程。本文还详细比较了使用基本图像处理技术作为图像数据增强技术与基于深度学习的数据增强机制所获得的结果的计算负担、模型存储的存储要求、精度和损失函数值等各参数。在未应用数据增强的MNIST数据集上,我们得到的结果精度为97.80%,损失为0.320,而通过调整亮度作为数据增强技术获得的精度最高,精度为98.57%,损失值为0.301。根据我们的研究结果,我们建议必须使用基于基本图像处理的数据增强技术来解决过拟合问题,而不是使用内存或计算成本高昂的基于深度学习的图像增强技术。该策略还有助于提高各种基于图像数据的深度学习管道的性能,并使这些模型更加鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Quantitative Analysis of Basic vs. Deep Learning-based Image Data Augmentation Techniques
Our proposed work is a research project that does quantitative analysis of various basic image manipulation techniques as processes for augmentation of image type data on the accuracy of deep learning task of hand-written digit recognition on MNIST dataset. The paper also presents a detailed comparison of various parameters such as computation burden, storage requirements for model storage, accuracy, and loss function value of the results obtained by using basic image manipulation techniques as image data augmentation techniques with those data augmentation mechanisms that are rooted in deep learning. The results that we have obtained on MNIST dataset without data augmentation applied are accuracy of 97.80% and loss of 0.320, whereas the highest accuracy was achieved by adjusting brightness as the data augmentation technique with 98.57% accuracy and 0.301 loss value. In the view of our results, we recommend that basic image manipulation-based data augmentation techniques must be used to address overfitting instead of memory or computationally expensive deep learning-based image augmentation techniques. This strategy also helps enhance the performance of various image data-based deep learning pipelines and makes these models more robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MPPT Based Solar PV and Class IV Powered Brushless DC Motor for Water Pump System Forecasting the potential influence of Covid-19 using Data Science and Analytics Asthma, Alzheimer's and Dementia Disease Detection based on Voice Recognition using Multi-Layer Perceptron Algorithm Automatic Speed Controller of Vehicles Using Arduino Board Implementation of Election System Using Blockchain Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1