工艺优化及机械侵蚀法去除酚醛树脂涂层

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES Progress in Rubber Plastics and Recycling Technology Pub Date : 2022-01-03 DOI:10.1177/14777606211066316
Sabarinathan Palaniyappan, Annamalai Veiravan, Vishal Kumar, Nitin Mathusoothanaperumal Sukanya, Dhinakaran Veeman
{"title":"工艺优化及机械侵蚀法去除酚醛树脂涂层","authors":"Sabarinathan Palaniyappan, Annamalai Veiravan, Vishal Kumar, Nitin Mathusoothanaperumal Sukanya, Dhinakaran Veeman","doi":"10.1177/14777606211066316","DOIUrl":null,"url":null,"abstract":"Consumption of coated abrasive discs in various automobile and pipe fitting application is increasing, due to its good surface finish. Coated abrasive disc consists of single layer of abrasive grain bonded to a fibre backing. The major portion of the disc is comprised of fibre backing. But the sustainability of the fibre backing is low and is dumped as waste after usage. The present work deals with the removal of resin coating and recovery of fibre backing from the spent coated abrasive discs using physical separation process such as sand blasting technique. Initially, the recovery experiment was carried out based on L16 orthogonal array. The factors and levels chosen for the experiments were erodent pressure (0.2, 0.4, 0.6 and 0.8 MPa), erodent size (36, 60, 80 and 120 grit), disc orientation (30, 45, 60 and 75°) and number of times flexing (5, 10, 15 and 20). The experimental result shows that erodent size and erodent pressure have a major impact on recovery of the fibre backing. The surface structure of the recovered backing was analysed using scanning electron microscopy and optical microscopy. The recovered backing was very much useful for the coated abrasive industry as the flexible backing and support material for abrasive grain coating.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"9 1","pages":"141 - 154"},"PeriodicalIF":1.1000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Process optimization and removal of phenol formaldehyde resin coating using mechanical erosion process\",\"authors\":\"Sabarinathan Palaniyappan, Annamalai Veiravan, Vishal Kumar, Nitin Mathusoothanaperumal Sukanya, Dhinakaran Veeman\",\"doi\":\"10.1177/14777606211066316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consumption of coated abrasive discs in various automobile and pipe fitting application is increasing, due to its good surface finish. Coated abrasive disc consists of single layer of abrasive grain bonded to a fibre backing. The major portion of the disc is comprised of fibre backing. But the sustainability of the fibre backing is low and is dumped as waste after usage. The present work deals with the removal of resin coating and recovery of fibre backing from the spent coated abrasive discs using physical separation process such as sand blasting technique. Initially, the recovery experiment was carried out based on L16 orthogonal array. The factors and levels chosen for the experiments were erodent pressure (0.2, 0.4, 0.6 and 0.8 MPa), erodent size (36, 60, 80 and 120 grit), disc orientation (30, 45, 60 and 75°) and number of times flexing (5, 10, 15 and 20). The experimental result shows that erodent size and erodent pressure have a major impact on recovery of the fibre backing. The surface structure of the recovered backing was analysed using scanning electron microscopy and optical microscopy. The recovered backing was very much useful for the coated abrasive industry as the flexible backing and support material for abrasive grain coating.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"9 1\",\"pages\":\"141 - 154\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606211066316\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606211066316","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 2

摘要

由于涂层磨盘具有良好的表面光洁度,在各种汽车和管件应用中的用量越来越大。涂覆磨料盘由单层磨粒粘接在纤维衬底上组成。磁盘的主要部分由纤维衬垫组成。但是纤维衬底的可持续性很低,使用后被当作废物丢弃。目前的工作是利用物理分离工艺,如喷砂技术,从废涂覆磨料盘中去除树脂涂层和回收纤维衬底。初步采用L16正交阵列进行回收试验。实验选取侵蚀压力(0.2、0.4、0.6和0.8 MPa)、侵蚀大小(36、60、80和120 grit)、盘片方向(30、45、60和75°)和弯曲次数(5、10、15和20)为影响因子和水平。实验结果表明,侵蚀尺寸和侵蚀压力对纤维衬底的恢复有重要影响。利用扫描电镜和光学显微镜对回收后的衬底表面结构进行了分析。回收的衬底作为柔性衬底和磨粒涂层的支撑材料,在涂覆磨具工业中具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Process optimization and removal of phenol formaldehyde resin coating using mechanical erosion process
Consumption of coated abrasive discs in various automobile and pipe fitting application is increasing, due to its good surface finish. Coated abrasive disc consists of single layer of abrasive grain bonded to a fibre backing. The major portion of the disc is comprised of fibre backing. But the sustainability of the fibre backing is low and is dumped as waste after usage. The present work deals with the removal of resin coating and recovery of fibre backing from the spent coated abrasive discs using physical separation process such as sand blasting technique. Initially, the recovery experiment was carried out based on L16 orthogonal array. The factors and levels chosen for the experiments were erodent pressure (0.2, 0.4, 0.6 and 0.8 MPa), erodent size (36, 60, 80 and 120 grit), disc orientation (30, 45, 60 and 75°) and number of times flexing (5, 10, 15 and 20). The experimental result shows that erodent size and erodent pressure have a major impact on recovery of the fibre backing. The surface structure of the recovered backing was analysed using scanning electron microscopy and optical microscopy. The recovered backing was very much useful for the coated abrasive industry as the flexible backing and support material for abrasive grain coating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Rubber Plastics and Recycling Technology
Progress in Rubber Plastics and Recycling Technology MATERIALS SCIENCE, COMPOSITES-POLYMER SCIENCE
CiteScore
4.40
自引率
7.70%
发文量
18
审稿时长
>12 weeks
期刊介绍: The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.
期刊最新文献
Characterization and application of composite resin of natural rubber latex and polystyrene waste as a binder for water-resistant emulsion paint formulation Lignin dispersion in polybutadiene rubber (BR) with different mixing parameters Comparative study: High performance polymers of polyphenylene sulfide and polyethylenimine using Taguchi-Topsis optimization approaches Contribution of geometrical infill pattern on mechanical behaviour of 3D manufactured polylactic acid specimen: Experimental and numerical analysis Non-linear mechanical behaviour of thermoplastic elastomeric materials and its vulcanizate under tension/tension fatigue deformation by fourier transform rheological studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1