先进封装rdl - 1面板级扇出技术设计、仿真与制造的应力与翘曲综合研究

P. Lin, C. Ko, W. Ho, Chi-Hai Kuo, Kuan-Wen Chen, Yu-Hua Chen, T. Tseng
{"title":"先进封装rdl - 1面板级扇出技术设计、仿真与制造的应力与翘曲综合研究","authors":"P. Lin, C. Ko, W. Ho, Chi-Hai Kuo, Kuan-Wen Chen, Yu-Hua Chen, T. Tseng","doi":"10.1109/ECTC.2017.106","DOIUrl":null,"url":null,"abstract":"Rapid development of semiconductor technology and multi-function demands of end products has driven IC foundry industry toward 7nm node process, and even next generation of 5nm. The I/O pitch of chip is reduced accordingly but the build-up layer of IC carrier is still too large to fit interconnects. In order to overcome the gap of I/O pitch between IC chip and carrier, the interposer technology has been considered as a solution to resolve the issue. However, the cost of silicon interposer is too high, and the glass interposer lacks the associated infrastructure and is difficult to be handled, which makes a technology drawback for market applications. Alternatively, fan-out wafer/panel level package technology is getting more attractions for advanced package recently because of its features of low profile, small form factor, and high bandwidth with fine line re-distribution layer (RDL) routability. There are lots of literatures addressing about the residual stress and warpage mostly on wafer level fan-out technology, especially for chip-first technology scheme. However, comprehensive study on the panel level fan-out is not mature yet. This paper investigates fundamental factors that impact the residual stress and warpage level of panel level fan-out package, such as metal layer counts, thickness of dielectric and metal layer, coefficient of thermal expansion (CTE) and Young's modulus of dielectric and molding compound, molding gap and molding process temperature, etc. In this study, a RDL-first (chip-last) fan-out panel level structure of three metal layers on releasing film molded with epoxy compound was established as a simulation model by means of finite element analysis software. The simulation results provide a guideline of design rules for fabricating multi-layer RDL panel level fan-out package and making the minimum residual stress while chip assembly. Fabrication of three-layer dielectric panel level fan-out, where 370mmx470mm panel size is applied, is also demonstrated to compare with the simulation results.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"32 1","pages":"1413-1418"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Comprehensive Study on Stress and Warpage by Design, Simulation and Fabrication of RDL-First Panel Level Fan-Out Technology for Advanced Package\",\"authors\":\"P. Lin, C. Ko, W. Ho, Chi-Hai Kuo, Kuan-Wen Chen, Yu-Hua Chen, T. Tseng\",\"doi\":\"10.1109/ECTC.2017.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid development of semiconductor technology and multi-function demands of end products has driven IC foundry industry toward 7nm node process, and even next generation of 5nm. The I/O pitch of chip is reduced accordingly but the build-up layer of IC carrier is still too large to fit interconnects. In order to overcome the gap of I/O pitch between IC chip and carrier, the interposer technology has been considered as a solution to resolve the issue. However, the cost of silicon interposer is too high, and the glass interposer lacks the associated infrastructure and is difficult to be handled, which makes a technology drawback for market applications. Alternatively, fan-out wafer/panel level package technology is getting more attractions for advanced package recently because of its features of low profile, small form factor, and high bandwidth with fine line re-distribution layer (RDL) routability. There are lots of literatures addressing about the residual stress and warpage mostly on wafer level fan-out technology, especially for chip-first technology scheme. However, comprehensive study on the panel level fan-out is not mature yet. This paper investigates fundamental factors that impact the residual stress and warpage level of panel level fan-out package, such as metal layer counts, thickness of dielectric and metal layer, coefficient of thermal expansion (CTE) and Young's modulus of dielectric and molding compound, molding gap and molding process temperature, etc. In this study, a RDL-first (chip-last) fan-out panel level structure of three metal layers on releasing film molded with epoxy compound was established as a simulation model by means of finite element analysis software. The simulation results provide a guideline of design rules for fabricating multi-layer RDL panel level fan-out package and making the minimum residual stress while chip assembly. Fabrication of three-layer dielectric panel level fan-out, where 370mmx470mm panel size is applied, is also demonstrated to compare with the simulation results.\",\"PeriodicalId\":6557,\"journal\":{\"name\":\"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"32 1\",\"pages\":\"1413-1418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2017.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

半导体技术的快速发展和终端产品的多功能需求推动IC代工行业向7nm节点工艺,甚至下一代5nm方向发展。芯片的I/O间距相应减小,但IC载波的堆积层仍然太大,无法适应互连。为了克服IC芯片与载波之间的I/O间距差距,中间体技术被认为是解决这一问题的一种方法。然而,硅中间层的成本太高,而玻璃中间层缺乏相关的基础设施,难以处理,这对于市场应用来说是一个技术缺陷。另外,扇出晶圆/面板级封装技术由于其低姿态、小尺寸、高带宽和细线再分布层(RDL)可达性等特点,最近在先进封装领域越来越受欢迎。关于残余应力和翘曲的研究文献多集中在晶圆级扇出技术,特别是芯片优先技术方案上。然而,对面板级扇出的综合研究还不成熟。本文研究了影响面板级扇出封装残余应力和翘曲水平的基本因素,如金属层数、介电层和金属层厚度、介电层和成型复合材料的热膨胀系数(CTE)和杨氏模量、成型间隙和成型工艺温度等。本研究利用有限元分析软件,建立了环氧化合物成型脱模膜上三金属层RDL-first (chip-last)扇出面板水平结构的仿真模型。仿真结果为多层RDL面板级扇出封装的设计规则提供了指导,并使芯片组装时的残余应力最小。并演示了采用370mmx470mm面板尺寸的三层介质面板水平扇出的制作过程,并与仿真结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Study on Stress and Warpage by Design, Simulation and Fabrication of RDL-First Panel Level Fan-Out Technology for Advanced Package
Rapid development of semiconductor technology and multi-function demands of end products has driven IC foundry industry toward 7nm node process, and even next generation of 5nm. The I/O pitch of chip is reduced accordingly but the build-up layer of IC carrier is still too large to fit interconnects. In order to overcome the gap of I/O pitch between IC chip and carrier, the interposer technology has been considered as a solution to resolve the issue. However, the cost of silicon interposer is too high, and the glass interposer lacks the associated infrastructure and is difficult to be handled, which makes a technology drawback for market applications. Alternatively, fan-out wafer/panel level package technology is getting more attractions for advanced package recently because of its features of low profile, small form factor, and high bandwidth with fine line re-distribution layer (RDL) routability. There are lots of literatures addressing about the residual stress and warpage mostly on wafer level fan-out technology, especially for chip-first technology scheme. However, comprehensive study on the panel level fan-out is not mature yet. This paper investigates fundamental factors that impact the residual stress and warpage level of panel level fan-out package, such as metal layer counts, thickness of dielectric and metal layer, coefficient of thermal expansion (CTE) and Young's modulus of dielectric and molding compound, molding gap and molding process temperature, etc. In this study, a RDL-first (chip-last) fan-out panel level structure of three metal layers on releasing film molded with epoxy compound was established as a simulation model by means of finite element analysis software. The simulation results provide a guideline of design rules for fabricating multi-layer RDL panel level fan-out package and making the minimum residual stress while chip assembly. Fabrication of three-layer dielectric panel level fan-out, where 370mmx470mm panel size is applied, is also demonstrated to compare with the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1