{"title":"俄罗斯欧洲地区中二叠纪Kazanichthys viatkensis(放线翼目,Acrolepididae)的牙齿系统:古生物学和古生态学推论","authors":"A. Bakaev, Z. Johanson, A. Leblanc","doi":"10.1002/spp2.1512","DOIUrl":null,"url":null,"abstract":"Among ray‐finned fishes (Actinopterygii), the crushing, durophagous feeding strategy first evolved in the early Carboniferous period, with the †Eurynotiformes possessing dentitions with single layers of partially to fully fused blunt teeth. In the †‘Platysomidae’ (Permian), a new form of crushing dentition evolved (phyllodonty), in which multiple layers of superimposed crushing teeth developed intraosseously, within the jaw. The phyllodont durophagous dentition is also recovered from later‐occurring taxa originating mainly in the Mesozoic, such as the †Bobastraniiformes, the neopterygians †Pycnodontiformes and Ginglymodi, and in the teleost group †Phyllodonta. By comparison, †Kazanichthys viatkensis, an actinopterygian from the middle Permian of European Russia, is characterized by a third, putatively durophagous dentition, with anterior conical teeth and closely packed molariform teeth on the buccal dental plates (a potential similarity with eurynotiforms). Whereas the conical teeth are similar to those of basal actinopterygians, the molariform teeth superficially resemble teeth of some teleosts (Characiformes, Tetraodontiformes), but are unique among known fossil and living Actinopterygii in being crowned by anastomosing, sharp apical ridges. Teeth are ankylosed to the jaw and acrodont in implantation. There is neither evidence of plicidentine, nor cavities corresponding to intraosseous crypts. Most replacement teeth formed extraosseously, differing from the phyllodont dentition, but similar to several more phylogenetically basal actinopterygians. The dental system morphologically resembles recent Sparidae (Teleostei; Perciformes), possibly indicating a similar trophic adaptation. Based on these comparisons and patterns of wear, we propose that †K. viatkensis was a generalist durophagous feeder, with the ability to switch prey types with its unique and complex dentition.","PeriodicalId":48705,"journal":{"name":"Papers in Palaeontology","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dental system of †Kazanichthys viatkensis (Actinopterygii, Acrolepididae) from the middle Permian of European Russia: palaeobiological and palaeoecological inferences\",\"authors\":\"A. Bakaev, Z. Johanson, A. Leblanc\",\"doi\":\"10.1002/spp2.1512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among ray‐finned fishes (Actinopterygii), the crushing, durophagous feeding strategy first evolved in the early Carboniferous period, with the †Eurynotiformes possessing dentitions with single layers of partially to fully fused blunt teeth. In the †‘Platysomidae’ (Permian), a new form of crushing dentition evolved (phyllodonty), in which multiple layers of superimposed crushing teeth developed intraosseously, within the jaw. The phyllodont durophagous dentition is also recovered from later‐occurring taxa originating mainly in the Mesozoic, such as the †Bobastraniiformes, the neopterygians †Pycnodontiformes and Ginglymodi, and in the teleost group †Phyllodonta. By comparison, †Kazanichthys viatkensis, an actinopterygian from the middle Permian of European Russia, is characterized by a third, putatively durophagous dentition, with anterior conical teeth and closely packed molariform teeth on the buccal dental plates (a potential similarity with eurynotiforms). Whereas the conical teeth are similar to those of basal actinopterygians, the molariform teeth superficially resemble teeth of some teleosts (Characiformes, Tetraodontiformes), but are unique among known fossil and living Actinopterygii in being crowned by anastomosing, sharp apical ridges. Teeth are ankylosed to the jaw and acrodont in implantation. There is neither evidence of plicidentine, nor cavities corresponding to intraosseous crypts. Most replacement teeth formed extraosseously, differing from the phyllodont dentition, but similar to several more phylogenetically basal actinopterygians. The dental system morphologically resembles recent Sparidae (Teleostei; Perciformes), possibly indicating a similar trophic adaptation. Based on these comparisons and patterns of wear, we propose that †K. viatkensis was a generalist durophagous feeder, with the ability to switch prey types with its unique and complex dentition.\",\"PeriodicalId\":48705,\"journal\":{\"name\":\"Papers in Palaeontology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Papers in Palaeontology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/spp2.1512\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Palaeontology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/spp2.1512","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
The dental system of †Kazanichthys viatkensis (Actinopterygii, Acrolepididae) from the middle Permian of European Russia: palaeobiological and palaeoecological inferences
Among ray‐finned fishes (Actinopterygii), the crushing, durophagous feeding strategy first evolved in the early Carboniferous period, with the †Eurynotiformes possessing dentitions with single layers of partially to fully fused blunt teeth. In the †‘Platysomidae’ (Permian), a new form of crushing dentition evolved (phyllodonty), in which multiple layers of superimposed crushing teeth developed intraosseously, within the jaw. The phyllodont durophagous dentition is also recovered from later‐occurring taxa originating mainly in the Mesozoic, such as the †Bobastraniiformes, the neopterygians †Pycnodontiformes and Ginglymodi, and in the teleost group †Phyllodonta. By comparison, †Kazanichthys viatkensis, an actinopterygian from the middle Permian of European Russia, is characterized by a third, putatively durophagous dentition, with anterior conical teeth and closely packed molariform teeth on the buccal dental plates (a potential similarity with eurynotiforms). Whereas the conical teeth are similar to those of basal actinopterygians, the molariform teeth superficially resemble teeth of some teleosts (Characiformes, Tetraodontiformes), but are unique among known fossil and living Actinopterygii in being crowned by anastomosing, sharp apical ridges. Teeth are ankylosed to the jaw and acrodont in implantation. There is neither evidence of plicidentine, nor cavities corresponding to intraosseous crypts. Most replacement teeth formed extraosseously, differing from the phyllodont dentition, but similar to several more phylogenetically basal actinopterygians. The dental system morphologically resembles recent Sparidae (Teleostei; Perciformes), possibly indicating a similar trophic adaptation. Based on these comparisons and patterns of wear, we propose that †K. viatkensis was a generalist durophagous feeder, with the ability to switch prey types with its unique and complex dentition.
期刊介绍:
Papers in Palaeontology is the successor to Special Papers in Palaeontology and a journal of the Palaeontological Association (www.palass.org). The journal is devoted to the publication of papers that document the diversity of past life and its distribution in time and space.
Papers in Palaeontology is devoted to the publication of papers that document the diversity of past life and its distribution in time and space. As a sister publication to Palaeontology its focus is on descriptive research, including the descriptions of new taxa, systematic revisions of higher taxa, detailed biostratigraphical and biogeographical documentation, and descriptions of floras and faunas from specific localities or regions. Most contributions are expected to be less than 30 pp long but longer contributions will be considered if the material merits it, including single topic parts.
The journal publishes a wide variety of papers on palaeontological topics covering:
palaeozoology,
palaeobotany,
systematic studies,
palaeoecology,
micropalaeontology,
palaeobiogeography,
functional morphology,
stratigraphy,
taxonomy,
taphonomy,
palaeoenvironmental reconstruction,
palaeoclimate analysis,
biomineralization studies.