{"title":"磁场与细胞凋亡:一个可能的机制","authors":"S. Tofani","doi":"10.1080/15368378.2022.2073547","DOIUrl":null,"url":null,"abstract":"ABSTRACT The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs’ effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Magnetic fields and apoptosis: a possible mechanism\",\"authors\":\"S. Tofani\",\"doi\":\"10.1080/15368378.2022.2073547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs’ effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2022.2073547\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2022.2073547","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Magnetic fields and apoptosis: a possible mechanism
ABSTRACT The potential therapeutic uses of electromagnetic fields (EMF), part of the nonionizing radiation spectrum, increase with time. Among them, those considering the potential antitumor effects exerted by the Magnetic Fields (MFs), part of the EMF entity, have gained more and more interest. A recent review on this subject reports the MFs’ effect on apoptosis of tumor cells as one of the most important breakthroughs. Apoptosis is considered a key mechanism regulating the genetic stability of cells and as such is considered of fundamental importance in cancer initiation and development. According to an atomic/sub-atomic analysis, based on quantum physics, of the complexity of biological life and the role played by oxygen and its radicals in cancer biology, a possible biophysical mechanism is described. The mechanism considers the influence of MFs on apoptosis through an effect on electron spin that is able to increase reactive oxygen species (ROS) concentration. Impacting on the delicate balance between ROS production and ROS elimination in tumor cells is considered a promising cancer therapy, affecting different biological processes, such as apoptosis and metastasis. An analysis in the literature, which allows correlation between MFs exposure characteristics and their influence on apoptosis and ROS concentration, supports the validity of the mechanism.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.