不同沼气水平双燃料火花点火发动机性能试验研究:排放减缓、性能及燃烧分析

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/ogst/2021060
S. Şi̇mşek, S. Uslu, Hatice Simsek
{"title":"不同沼气水平双燃料火花点火发动机性能试验研究:排放减缓、性能及燃烧分析","authors":"S. Şi̇mşek, S. Uslu, Hatice Simsek","doi":"10.2516/ogst/2021060","DOIUrl":null,"url":null,"abstract":"The major aim of the research is to investigate the ability of biogas as an alternative fuel for gasoline-powered Spark Ignition (SI) engine. In this study, biogas/gasoline fuel mixtures containing different ratios of biogas, gasoline, and biogas were tested in an SI engine with an increased compression ratio at different engine loads and constant engine speed. According to the comparison with gasoline, the utilization of biogas generally decreased the Brake Thermal Efficiency (BTE), while the Brake Specific Fuel Consumption (BSFC) rose. The lowest BTE and the highest BSFC were obtained with 100% biogas. Compared to gasoline, a decrease of 16.04% and an increase of 75.52% were observed, respectively. On the other hand, the use of biogas has improved all emissions. The best emission values were obtained with 100% biogas. Compared to gasoline, Carbon monoxide (CO), HydroCarbon (HC), and Nitrogen Oxide (NOx) emissions decreased by 56.42%, 63%, and 48.96%, respectively. Finally, according to the results of the combustion analysis, the peak pressures were reduced with the utilization of biogas, and the position of the peak pressure shifted by 2° to 3° Crank Angle (CA). Compared to gasoline, the lowest pressure was obtained with 100% biogas, resulting in a reduction of approximately 24.69%.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Experimental study on the ability of different biogas level dual fuel spark ignition engine: Emission mitigation, performance, and combustion analysis\",\"authors\":\"S. Şi̇mşek, S. Uslu, Hatice Simsek\",\"doi\":\"10.2516/ogst/2021060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The major aim of the research is to investigate the ability of biogas as an alternative fuel for gasoline-powered Spark Ignition (SI) engine. In this study, biogas/gasoline fuel mixtures containing different ratios of biogas, gasoline, and biogas were tested in an SI engine with an increased compression ratio at different engine loads and constant engine speed. According to the comparison with gasoline, the utilization of biogas generally decreased the Brake Thermal Efficiency (BTE), while the Brake Specific Fuel Consumption (BSFC) rose. The lowest BTE and the highest BSFC were obtained with 100% biogas. Compared to gasoline, a decrease of 16.04% and an increase of 75.52% were observed, respectively. On the other hand, the use of biogas has improved all emissions. The best emission values were obtained with 100% biogas. Compared to gasoline, Carbon monoxide (CO), HydroCarbon (HC), and Nitrogen Oxide (NOx) emissions decreased by 56.42%, 63%, and 48.96%, respectively. Finally, according to the results of the combustion analysis, the peak pressures were reduced with the utilization of biogas, and the position of the peak pressure shifted by 2° to 3° Crank Angle (CA). Compared to gasoline, the lowest pressure was obtained with 100% biogas, resulting in a reduction of approximately 24.69%.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/ogst/2021060\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021060","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 10

摘要

该研究的主要目的是研究沼气作为汽油动力火花点火(SI)发动机的替代燃料的能力。在本研究中,在不同发动机负荷和恒定发动机转速下,在压缩比增加的SI发动机上测试了含有不同沼气、汽油和沼气比例的沼气/汽油燃料混合物。与汽油相比,沼气的使用普遍降低了汽车的制动热效率(BTE),而提高了汽车的制动比油耗(BSFC)。100%沼气的BTE最低,BSFC最高。与汽油相比,汽油价格分别下跌16.04%和上涨75.52%。另一方面,沼气的使用改善了所有的排放。100%沼气的排放值最佳。与汽油相比,一氧化碳(CO)、碳氢化合物(HC)和氮氧化物(NOx)的排放量分别下降了56.42%、63%和48.96%。最后,根据燃烧分析结果,随着沼气的利用,峰值压力降低,峰值压力位置移动2°~ 3°曲柄角(CA)。与汽油相比,100%沼气的压力最低,减少了约24.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on the ability of different biogas level dual fuel spark ignition engine: Emission mitigation, performance, and combustion analysis
The major aim of the research is to investigate the ability of biogas as an alternative fuel for gasoline-powered Spark Ignition (SI) engine. In this study, biogas/gasoline fuel mixtures containing different ratios of biogas, gasoline, and biogas were tested in an SI engine with an increased compression ratio at different engine loads and constant engine speed. According to the comparison with gasoline, the utilization of biogas generally decreased the Brake Thermal Efficiency (BTE), while the Brake Specific Fuel Consumption (BSFC) rose. The lowest BTE and the highest BSFC were obtained with 100% biogas. Compared to gasoline, a decrease of 16.04% and an increase of 75.52% were observed, respectively. On the other hand, the use of biogas has improved all emissions. The best emission values were obtained with 100% biogas. Compared to gasoline, Carbon monoxide (CO), HydroCarbon (HC), and Nitrogen Oxide (NOx) emissions decreased by 56.42%, 63%, and 48.96%, respectively. Finally, according to the results of the combustion analysis, the peak pressures were reduced with the utilization of biogas, and the position of the peak pressure shifted by 2° to 3° Crank Angle (CA). Compared to gasoline, the lowest pressure was obtained with 100% biogas, resulting in a reduction of approximately 24.69%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1