十字路口行人伤害严重程度的部分比例赔率模型的建立

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2020-07-23 DOI:10.7307/ptt.v32i4.3428
Xi Lu, Zhuanglin Ma, S. Chien, Ying Xiong
{"title":"十字路口行人伤害严重程度的部分比例赔率模型的建立","authors":"Xi Lu, Zhuanglin Ma, S. Chien, Ying Xiong","doi":"10.7307/ptt.v32i4.3428","DOIUrl":null,"url":null,"abstract":"Pedestrian injury in crashes at intersections often results from complex interaction among various factors. The factor identification is a critical task for understanding the causes and improving the pedestrian safety. A total of 2,614 crash records at signalized and non-signalized intersections were applied. A Partial Proportional Odds (PPO) model was developed to examine the factors influencing Pedestrian Injury Severity (PIS) because it can accommodate the ordered response nature of injury severity. An elasticity analysis was conducted to quantify the marginal effects of contributing factors on the likelihood of PIS. For signalized intersections, seven explanatory variables significantly affect the likelihood of PIS, in which five explanatory variables violate the Proportional Odds Assumption (POA). Local driver, truck, holiday, clear weather, and hit-and-run lead to higher likelihood of severer PIS. For non-signalized intersections, six explanatory variables were found significant to the PIS, in which three explanatory variables violate the POA. Young and adult drivers, senior pedestrian, bus/van, divided road, holiday, and darkness tend to increase the likelihood of severer PIS. The vehicles of large size and heavy weight (e.g. truck, bus/van) are significant factors to the PIS at both signalized and non-signalized intersections. The proposed PPO model has demonstrated its effectiveness in identifying the effects of contributing factors on the PIS.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a Partial Proportional Odds Model for Pedestrian Injury Severity at Intersections\",\"authors\":\"Xi Lu, Zhuanglin Ma, S. Chien, Ying Xiong\",\"doi\":\"10.7307/ptt.v32i4.3428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian injury in crashes at intersections often results from complex interaction among various factors. The factor identification is a critical task for understanding the causes and improving the pedestrian safety. A total of 2,614 crash records at signalized and non-signalized intersections were applied. A Partial Proportional Odds (PPO) model was developed to examine the factors influencing Pedestrian Injury Severity (PIS) because it can accommodate the ordered response nature of injury severity. An elasticity analysis was conducted to quantify the marginal effects of contributing factors on the likelihood of PIS. For signalized intersections, seven explanatory variables significantly affect the likelihood of PIS, in which five explanatory variables violate the Proportional Odds Assumption (POA). Local driver, truck, holiday, clear weather, and hit-and-run lead to higher likelihood of severer PIS. For non-signalized intersections, six explanatory variables were found significant to the PIS, in which three explanatory variables violate the POA. Young and adult drivers, senior pedestrian, bus/van, divided road, holiday, and darkness tend to increase the likelihood of severer PIS. The vehicles of large size and heavy weight (e.g. truck, bus/van) are significant factors to the PIS at both signalized and non-signalized intersections. The proposed PPO model has demonstrated its effectiveness in identifying the effects of contributing factors on the PIS.\",\"PeriodicalId\":54546,\"journal\":{\"name\":\"Promet-Traffic & Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Promet-Traffic & Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.7307/ptt.v32i4.3428\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v32i4.3428","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

十字路口交通事故中行人伤害往往是多种因素复杂相互作用的结果。因素识别是了解交通事故原因,提高行人安全水平的关键。在有信号和无信号的交叉路口共应用了2,614个碰撞记录。由于部分比例赔率(PPO)模型可以适应损伤严重程度的有序反应性质,因此建立了部分比例赔率(PPO)模型来研究影响行人损伤严重程度的因素。我们进行了弹性分析,以量化贡献因素对PIS可能性的边际效应。对于信号交叉口,七个解释变量显著影响PIS的可能性,其中五个解释变量违反比例赔率假设(POA)。当地司机、卡车、假日、晴朗的天气和肇事逃逸导致严重PIS的可能性更高。对于非信号交叉口,有6个解释变量对PIS显著,其中3个解释变量违反了POA。年轻和成年司机、老年行人、公共汽车/面包车、分隔道路、假期和黑暗倾向于增加严重PIS的可能性。在有信号和没有信号的交叉路口,大型和重型车辆(例如卡车、巴士/货车)都是影响交通信号的重要因素。所提出的PPO模型已证明其在识别贡献因素对PIS的影响方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Partial Proportional Odds Model for Pedestrian Injury Severity at Intersections
Pedestrian injury in crashes at intersections often results from complex interaction among various factors. The factor identification is a critical task for understanding the causes and improving the pedestrian safety. A total of 2,614 crash records at signalized and non-signalized intersections were applied. A Partial Proportional Odds (PPO) model was developed to examine the factors influencing Pedestrian Injury Severity (PIS) because it can accommodate the ordered response nature of injury severity. An elasticity analysis was conducted to quantify the marginal effects of contributing factors on the likelihood of PIS. For signalized intersections, seven explanatory variables significantly affect the likelihood of PIS, in which five explanatory variables violate the Proportional Odds Assumption (POA). Local driver, truck, holiday, clear weather, and hit-and-run lead to higher likelihood of severer PIS. For non-signalized intersections, six explanatory variables were found significant to the PIS, in which three explanatory variables violate the POA. Young and adult drivers, senior pedestrian, bus/van, divided road, holiday, and darkness tend to increase the likelihood of severer PIS. The vehicles of large size and heavy weight (e.g. truck, bus/van) are significant factors to the PIS at both signalized and non-signalized intersections. The proposed PPO model has demonstrated its effectiveness in identifying the effects of contributing factors on the PIS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1