连续时间多层递归神经网络的绝对稳定性和耗散性

J. Suykens, J. Vandewalle
{"title":"连续时间多层递归神经网络的绝对稳定性和耗散性","authors":"J. Suykens, J. Vandewalle","doi":"10.1109/ISCAS.1997.608791","DOIUrl":null,"url":null,"abstract":"In this paper we present a sufficient condition for global asymptotic stability of continuous time multilayer recurrent neural networks with two-hidden layers. The condition is based on a Lur'e-Postnikov Lyapunov function and is expressed as a matrix inequality. With respect to input/output stability a condition for dissipativity is derived, which includes, for example, the cases of passivity and finite L/sub 2/-gain. This result is based on a quadratic storage function plus integral term. For nonlinear modelling and control purposes it enables to modify the classical dynamical backpropagation algorithm with a matrix inequality constraint in order to guarantee stable identified models or stable closed-loop control schemes, in a similar fashion has this can be done in discrete time NL/sub q/ theory.","PeriodicalId":68559,"journal":{"name":"电路与系统学报","volume":"1 1","pages":"517-520 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absolute stability and dissipativity of continuous time multilayer recurrent neural networks\",\"authors\":\"J. Suykens, J. Vandewalle\",\"doi\":\"10.1109/ISCAS.1997.608791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a sufficient condition for global asymptotic stability of continuous time multilayer recurrent neural networks with two-hidden layers. The condition is based on a Lur'e-Postnikov Lyapunov function and is expressed as a matrix inequality. With respect to input/output stability a condition for dissipativity is derived, which includes, for example, the cases of passivity and finite L/sub 2/-gain. This result is based on a quadratic storage function plus integral term. For nonlinear modelling and control purposes it enables to modify the classical dynamical backpropagation algorithm with a matrix inequality constraint in order to guarantee stable identified models or stable closed-loop control schemes, in a similar fashion has this can be done in discrete time NL/sub q/ theory.\",\"PeriodicalId\":68559,\"journal\":{\"name\":\"电路与系统学报\",\"volume\":\"1 1\",\"pages\":\"517-520 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"电路与系统学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.1997.608791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ISCAS.1997.608791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了具有两隐层的连续时间多层递归神经网络全局渐近稳定的一个充分条件。该条件基于Lur'e-Postnikov Lyapunov函数,并表示为矩阵不等式。对于输入/输出稳定性,导出了耗散率的一个条件,其中包括无源性和有限L/sub 2/-增益的情况。这个结果是基于二次存储函数加上积分项。对于非线性建模和控制目的,它可以用矩阵不等式约束修改经典的动态反向传播算法,以保证稳定的识别模型或稳定的闭环控制方案,以类似的方式,这可以在离散时间NL/sub q/理论中完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Absolute stability and dissipativity of continuous time multilayer recurrent neural networks
In this paper we present a sufficient condition for global asymptotic stability of continuous time multilayer recurrent neural networks with two-hidden layers. The condition is based on a Lur'e-Postnikov Lyapunov function and is expressed as a matrix inequality. With respect to input/output stability a condition for dissipativity is derived, which includes, for example, the cases of passivity and finite L/sub 2/-gain. This result is based on a quadratic storage function plus integral term. For nonlinear modelling and control purposes it enables to modify the classical dynamical backpropagation algorithm with a matrix inequality constraint in order to guarantee stable identified models or stable closed-loop control schemes, in a similar fashion has this can be done in discrete time NL/sub q/ theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2463
期刊最新文献
Hysteresis quantizer Design of wide-tunable translinear second-order oscillators Design of a direct digital synthesizer with an on-chip D/A-converter Steady state analysis of SMPS Low power wireless communication and signal processing circuits for distributed microsensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1