J. Diao, J. Lei, Yi-Yu Qiu, Deman Liu, Hong-Yi Li, B. Xie, Gang Li
{"title":"氮化过程中氧化钒的相演化及元素迁移研究","authors":"J. Diao, J. Lei, Yi-Yu Qiu, Deman Liu, Hong-Yi Li, B. Xie, Gang Li","doi":"10.1051/METAL/2021027","DOIUrl":null,"url":null,"abstract":"In this paper, a series of nitriding experiments were carried out to investigate the phase evolution and element migration in the nitriding process. The results show that it undergoes a low temperature reducing stage firstly. High valent vanadium oxides are reduced to V2 O3 between room temperature and 770 °C. In Ar atmosphere, V2 O3 reacts with C to form VC in the temperature interval of 770 °C∼1080 °C. In N2 atmosphere, V2 O3 reacts directly with N2 and C to form VN in the interval of 670 °C∼1050 °C. During 1050 °C∼1270 °C, part of the VN obtained in the previous reaction stage will react with C to form VC. High temperature is beneficial to the removal of impurity element sulfur. The volatilization of alkali metal elements in the pellet mainly occurs between 670 °C and 1270 °C. However, there are about 20% of sodium and potassium remain in the nitriding product. The volatile alkali metal vapor would react with other gases at the furnace cover to form a white sediment and deposits on the cover. The sediment mainly consists of Na2 CO3 , K2 CO3 , Na2 SO4 , K2 SO4 , KCl, etc.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"63 1","pages":"309"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the phase evolution and element migration of vanadium oxide during the nitridation process\",\"authors\":\"J. Diao, J. Lei, Yi-Yu Qiu, Deman Liu, Hong-Yi Li, B. Xie, Gang Li\",\"doi\":\"10.1051/METAL/2021027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a series of nitriding experiments were carried out to investigate the phase evolution and element migration in the nitriding process. The results show that it undergoes a low temperature reducing stage firstly. High valent vanadium oxides are reduced to V2 O3 between room temperature and 770 °C. In Ar atmosphere, V2 O3 reacts with C to form VC in the temperature interval of 770 °C∼1080 °C. In N2 atmosphere, V2 O3 reacts directly with N2 and C to form VN in the interval of 670 °C∼1050 °C. During 1050 °C∼1270 °C, part of the VN obtained in the previous reaction stage will react with C to form VC. High temperature is beneficial to the removal of impurity element sulfur. The volatilization of alkali metal elements in the pellet mainly occurs between 670 °C and 1270 °C. However, there are about 20% of sodium and potassium remain in the nitriding product. The volatile alkali metal vapor would react with other gases at the furnace cover to form a white sediment and deposits on the cover. The sediment mainly consists of Na2 CO3 , K2 CO3 , Na2 SO4 , K2 SO4 , KCl, etc.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"63 1\",\"pages\":\"309\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/METAL/2021027\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/METAL/2021027","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Study on the phase evolution and element migration of vanadium oxide during the nitridation process
In this paper, a series of nitriding experiments were carried out to investigate the phase evolution and element migration in the nitriding process. The results show that it undergoes a low temperature reducing stage firstly. High valent vanadium oxides are reduced to V2 O3 between room temperature and 770 °C. In Ar atmosphere, V2 O3 reacts with C to form VC in the temperature interval of 770 °C∼1080 °C. In N2 atmosphere, V2 O3 reacts directly with N2 and C to form VN in the interval of 670 °C∼1050 °C. During 1050 °C∼1270 °C, part of the VN obtained in the previous reaction stage will react with C to form VC. High temperature is beneficial to the removal of impurity element sulfur. The volatilization of alkali metal elements in the pellet mainly occurs between 670 °C and 1270 °C. However, there are about 20% of sodium and potassium remain in the nitriding product. The volatile alkali metal vapor would react with other gases at the furnace cover to form a white sediment and deposits on the cover. The sediment mainly consists of Na2 CO3 , K2 CO3 , Na2 SO4 , K2 SO4 , KCl, etc.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.