大直径系泊链的面外弯曲试验

P. Barros, E. Carlberg, I. S. Høgsæt, M. Karimi, J. Braun, E. Gooijer, P. Vargas
{"title":"大直径系泊链的面外弯曲试验","authors":"P. Barros, E. Carlberg, I. S. Høgsæt, M. Karimi, J. Braun, E. Gooijer, P. Vargas","doi":"10.1115/omae2020-18805","DOIUrl":null,"url":null,"abstract":"\n Chevron Corporation and Bluewater Energy Services (BES) performed a chain out-of-plane bending (OPB) test, called OPB MAX hereafter, at DNV GL’s laboratory in Høvik-Norway. The test was performed to study the OPB phenomenon for a chain diameter which was larger than the maximum diameter tested by the OPB JIP. The goal was to understand chain OPB physics for such a large diameter, measure interlink stiffness and maximum sliding moments and validate BES’ in-house finite element model. The current study is a collaboration between all involved parties and the results will be presented in three papers. The first paper summarizes the test setup and instrumentation. The second paper describes the test results, compares them with the OPB JIP estimations and tries to describe the chain OPB physics. The third and the last paper presents the FEA results performed by BES’ in-house finite element model. This paper is the first of the three and focuses on the test setup and instrumentation.\n The testing machine has been developed by DNV GL and is capable of applying tensions up to 350 t and interlink rotations in the range of ±3 degrees. Two 7-link chain specimens of R4 and R4s grades, both with the nominal diameter of 168 mm were tested at five tension levels from 150, to 350 t. Testing was performed in both wet and dry conditions. Twenty strain gauges were used to measure 3 OPB and 2 IPB moments at 5 mid-link positions. Twelve strain gauge rosettes were used on 3 links to evaluate SCF’s on the OPB hotspots. Seven inclinometers were used to monitor link rotations. DNV GL utilized a digital image processing tool to capture relative movements of chain links and developed a specific data processing tool to calculate the interlink stiffness, perform statistical analysis and provide several levels of data evaluation and comparison between the tests.\n The paper will provide a description of the test matrix and test objectives are given with the background of the previously performed OPB tests. Next a detailed description of the test rig is presented including the utilized instrumentation. Finally, an explanation of the implemented real-time test monitoring and the performed post-processing on the readings, in line with the test objectives is mentioned. The initial test results are briefly provided at the end.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Out-of-Plane Bending (OPB) Test of Large Diameter Mooring Chains\",\"authors\":\"P. Barros, E. Carlberg, I. S. Høgsæt, M. Karimi, J. Braun, E. Gooijer, P. Vargas\",\"doi\":\"10.1115/omae2020-18805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Chevron Corporation and Bluewater Energy Services (BES) performed a chain out-of-plane bending (OPB) test, called OPB MAX hereafter, at DNV GL’s laboratory in Høvik-Norway. The test was performed to study the OPB phenomenon for a chain diameter which was larger than the maximum diameter tested by the OPB JIP. The goal was to understand chain OPB physics for such a large diameter, measure interlink stiffness and maximum sliding moments and validate BES’ in-house finite element model. The current study is a collaboration between all involved parties and the results will be presented in three papers. The first paper summarizes the test setup and instrumentation. The second paper describes the test results, compares them with the OPB JIP estimations and tries to describe the chain OPB physics. The third and the last paper presents the FEA results performed by BES’ in-house finite element model. This paper is the first of the three and focuses on the test setup and instrumentation.\\n The testing machine has been developed by DNV GL and is capable of applying tensions up to 350 t and interlink rotations in the range of ±3 degrees. Two 7-link chain specimens of R4 and R4s grades, both with the nominal diameter of 168 mm were tested at five tension levels from 150, to 350 t. Testing was performed in both wet and dry conditions. Twenty strain gauges were used to measure 3 OPB and 2 IPB moments at 5 mid-link positions. Twelve strain gauge rosettes were used on 3 links to evaluate SCF’s on the OPB hotspots. Seven inclinometers were used to monitor link rotations. DNV GL utilized a digital image processing tool to capture relative movements of chain links and developed a specific data processing tool to calculate the interlink stiffness, perform statistical analysis and provide several levels of data evaluation and comparison between the tests.\\n The paper will provide a description of the test matrix and test objectives are given with the background of the previously performed OPB tests. Next a detailed description of the test rig is presented including the utilized instrumentation. Finally, an explanation of the implemented real-time test monitoring and the performed post-processing on the readings, in line with the test objectives is mentioned. The initial test results are briefly provided at the end.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2020-18805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-18805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

雪佛龙公司和蓝水能源服务公司(BES)在挪威的DNV GL实验室进行了一项链面外弯曲(OPB)测试,以下称为OPB MAX。试验研究了链条直径大于OPB JIP测试的最大直径时的OPB现象。目标是了解如此大直径的链OPB物理特性,测量互连刚度和最大滑动力矩,并验证BES的内部有限元模型。目前的研究是所有相关方的合作,结果将在三篇论文中发表。第一篇论文概述了测试设置和仪器。第二篇论文描述了测试结果,将其与OPB JIP估计进行了比较,并尝试描述链OPB物理。第三篇也是最后一篇文章给出了利用BES内部有限元模型进行有限元分析的结果。本文是三篇论文中的第一篇,重点介绍了测试设置和仪器。该试验机由DNV GL开发,能够施加高达350 t的张力,并在±3度范围内相互连接旋转。两个R4和R4s等级的7连杆链试件,公称直径均为168毫米,在150至350吨的五个张力水平下进行了测试。测试在湿和干条件下进行。使用20个应变片测量5个中杆位置的3个OPB和2个IPB力矩。在3个连杆上使用了12个应变计花环来评估OPB热点上的SCF。七个测斜仪用于监测连杆旋转。DNV GL利用数字图像处理工具捕获链链的相对运动,并开发了特定的数据处理工具来计算互连刚度,进行统计分析,并提供多个级别的数据评估和测试之间的比较。本文将提供测试矩阵和测试目标的描述,并提供先前进行的OPB测试的背景。其次,详细介绍了试验台,包括所使用的仪器。最后,根据测试目标,说明了所实现的实时测试监控和对读数进行的后处理。最后简要介绍了初步试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Out-of-Plane Bending (OPB) Test of Large Diameter Mooring Chains
Chevron Corporation and Bluewater Energy Services (BES) performed a chain out-of-plane bending (OPB) test, called OPB MAX hereafter, at DNV GL’s laboratory in Høvik-Norway. The test was performed to study the OPB phenomenon for a chain diameter which was larger than the maximum diameter tested by the OPB JIP. The goal was to understand chain OPB physics for such a large diameter, measure interlink stiffness and maximum sliding moments and validate BES’ in-house finite element model. The current study is a collaboration between all involved parties and the results will be presented in three papers. The first paper summarizes the test setup and instrumentation. The second paper describes the test results, compares them with the OPB JIP estimations and tries to describe the chain OPB physics. The third and the last paper presents the FEA results performed by BES’ in-house finite element model. This paper is the first of the three and focuses on the test setup and instrumentation. The testing machine has been developed by DNV GL and is capable of applying tensions up to 350 t and interlink rotations in the range of ±3 degrees. Two 7-link chain specimens of R4 and R4s grades, both with the nominal diameter of 168 mm were tested at five tension levels from 150, to 350 t. Testing was performed in both wet and dry conditions. Twenty strain gauges were used to measure 3 OPB and 2 IPB moments at 5 mid-link positions. Twelve strain gauge rosettes were used on 3 links to evaluate SCF’s on the OPB hotspots. Seven inclinometers were used to monitor link rotations. DNV GL utilized a digital image processing tool to capture relative movements of chain links and developed a specific data processing tool to calculate the interlink stiffness, perform statistical analysis and provide several levels of data evaluation and comparison between the tests. The paper will provide a description of the test matrix and test objectives are given with the background of the previously performed OPB tests. Next a detailed description of the test rig is presented including the utilized instrumentation. Finally, an explanation of the implemented real-time test monitoring and the performed post-processing on the readings, in line with the test objectives is mentioned. The initial test results are briefly provided at the end.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of the Inertial Components in Modal State Covariances Prelude FLNG Free Weathervaning Heading Prediction and Uncertainties, Based on Machine Learning Model Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Wave Impact Dynamic Response of a Generic Self-Elevating Unit in Operation With Hull in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1