迭代多级近似逻辑综合的有效批量统计误差估计

Sanbao Su, Yi Wu, Weikang Qian
{"title":"迭代多级近似逻辑综合的有效批量统计误差估计","authors":"Sanbao Su, Yi Wu, Weikang Qian","doi":"10.1145/3195970.3196038","DOIUrl":null,"url":null,"abstract":"Approximate computing is an emerging energy-efficient paradigm for error-resilient applications. Approximate logic synthesis (ALS) is an important field of it. To improve the existing ALS flows, one key issue is to derive a more accurate and efficient batch error estimation technique for all approximate transformations under consideration. In this work, we propose a novel batch error estimation method based on Monte Carlo simulation and local change propagation. It is generally applicable to any statistical error measurement such as error rate and average error magnitude. We applied the technique to an existing state-of-the-art ALS approach and demonstrated its effectiveness in deriving better approximate circuits.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"11 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Efficient Batch Statistical Error Estimation for Iterative Multi-level Approximate Logic Synthesis\",\"authors\":\"Sanbao Su, Yi Wu, Weikang Qian\",\"doi\":\"10.1145/3195970.3196038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate computing is an emerging energy-efficient paradigm for error-resilient applications. Approximate logic synthesis (ALS) is an important field of it. To improve the existing ALS flows, one key issue is to derive a more accurate and efficient batch error estimation technique for all approximate transformations under consideration. In this work, we propose a novel batch error estimation method based on Monte Carlo simulation and local change propagation. It is generally applicable to any statistical error measurement such as error rate and average error magnitude. We applied the technique to an existing state-of-the-art ALS approach and demonstrated its effectiveness in deriving better approximate circuits.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"11 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3196038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

近似计算是一种用于容错应用的新兴节能范例。近似逻辑综合(ALS)是其中的一个重要领域。为了改进现有的渐近变换流程,一个关键问题是对所考虑的所有近似变换推导出一种更准确、更有效的批量误差估计技术。在这项工作中,我们提出了一种新的基于蒙特卡罗模拟和局部变化传播的批量误差估计方法。一般适用于误差率、平均误差大小等任何统计误差测量。我们将该技术应用于现有的最先进的ALS方法,并证明了其在推导更好的近似电路方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Batch Statistical Error Estimation for Iterative Multi-level Approximate Logic Synthesis
Approximate computing is an emerging energy-efficient paradigm for error-resilient applications. Approximate logic synthesis (ALS) is an important field of it. To improve the existing ALS flows, one key issue is to derive a more accurate and efficient batch error estimation technique for all approximate transformations under consideration. In this work, we propose a novel batch error estimation method based on Monte Carlo simulation and local change propagation. It is generally applicable to any statistical error measurement such as error rate and average error magnitude. We applied the technique to an existing state-of-the-art ALS approach and demonstrated its effectiveness in deriving better approximate circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1