{"title":"多壁碳纳米管(MWCNTs)分散ZnS基光催化活性的合成与表征","authors":"Rajesh Sahu, S. Jain, B. Tripathi","doi":"10.21272/JNEP.13(1).01027","DOIUrl":null,"url":null,"abstract":"Zinc Sulfide (ZnS) based photocatalytic activity has been focused in solar hydrogen production and water treatment process because to their very strong redox reaction. Due to wide visible light range, ZnS becomes a promising semiconductor in formation of photocatalysts. The bandgap energies ( E g ) of all prepared samples ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated and Methylene Blue (MB) degradation study occurring of ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated under visible light us-ing UV-visible spectroscopy. The author found that removal rate of MB is greater than 95 percentage in the presence of MWCNTs/ZnS composites photocatalysts after 50 min. Crystalline grain size and structure of photocatalyst were characterized by X-ray Diffraction (XRD) spectroscopy. The enhancement of photo-catalytic activity can be associated by many factors like a suitable band gap in visible region, crystalline structure of nanocomposites and particle size in nanometer (nm) of the MWCNTs/ZnS nanocomposites. The suitable photocatalytic reaction and mechanisms of MB degradation also included in this article.","PeriodicalId":16514,"journal":{"name":"Journal of Nano- and Electronic Physics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Multiwalled Carbon Nanotubes (MWCNTs) Dispersed ZnS Based Photocatalytic Activity\",\"authors\":\"Rajesh Sahu, S. Jain, B. Tripathi\",\"doi\":\"10.21272/JNEP.13(1).01027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc Sulfide (ZnS) based photocatalytic activity has been focused in solar hydrogen production and water treatment process because to their very strong redox reaction. Due to wide visible light range, ZnS becomes a promising semiconductor in formation of photocatalysts. The bandgap energies ( E g ) of all prepared samples ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated and Methylene Blue (MB) degradation study occurring of ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated under visible light us-ing UV-visible spectroscopy. The author found that removal rate of MB is greater than 95 percentage in the presence of MWCNTs/ZnS composites photocatalysts after 50 min. Crystalline grain size and structure of photocatalyst were characterized by X-ray Diffraction (XRD) spectroscopy. The enhancement of photo-catalytic activity can be associated by many factors like a suitable band gap in visible region, crystalline structure of nanocomposites and particle size in nanometer (nm) of the MWCNTs/ZnS nanocomposites. The suitable photocatalytic reaction and mechanisms of MB degradation also included in this article.\",\"PeriodicalId\":16514,\"journal\":{\"name\":\"Journal of Nano- and Electronic Physics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano- and Electronic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21272/JNEP.13(1).01027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano- and Electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/JNEP.13(1).01027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Characterization of Multiwalled Carbon Nanotubes (MWCNTs) Dispersed ZnS Based Photocatalytic Activity
Zinc Sulfide (ZnS) based photocatalytic activity has been focused in solar hydrogen production and water treatment process because to their very strong redox reaction. Due to wide visible light range, ZnS becomes a promising semiconductor in formation of photocatalysts. The bandgap energies ( E g ) of all prepared samples ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated and Methylene Blue (MB) degradation study occurring of ZnS NCs and MWCNTs/ZnS nanocomposites were evaluated under visible light us-ing UV-visible spectroscopy. The author found that removal rate of MB is greater than 95 percentage in the presence of MWCNTs/ZnS composites photocatalysts after 50 min. Crystalline grain size and structure of photocatalyst were characterized by X-ray Diffraction (XRD) spectroscopy. The enhancement of photo-catalytic activity can be associated by many factors like a suitable band gap in visible region, crystalline structure of nanocomposites and particle size in nanometer (nm) of the MWCNTs/ZnS nanocomposites. The suitable photocatalytic reaction and mechanisms of MB degradation also included in this article.