C. Aumnate, Nithiwach Nawaukkaratharnant, N. Chuankrerkkul
{"title":"银粉末注射成型用水溶性粘结剂原料的制备","authors":"C. Aumnate, Nithiwach Nawaukkaratharnant, N. Chuankrerkkul","doi":"10.55713/jmmm.v32i3.1271","DOIUrl":null,"url":null,"abstract":"Feedstock for powder injection moulding of silver was prepared using water-soluble binder composed of polyethylene glycol (PEG) and polyvinyl butyrol (PVB). Silver powders with particle size in range of 1 μm to 20 μm can be mixed with PEG/PVB binder system to form feedstocks having powder loadings of 42 vol% and 45 vol%. PEG can be removed using water leaching method while PVB can be removed by thermal debinding. Specimens retained their shapes during debinding and after debinding. Components fabricated with relatively higher powder loading resulted in higher density with lower porosity. Density of specimens containing powder loading of 42 vol% and 45 vol% and heated at 700℃ is about 43% and 46% of the theoretical value, respectively. Therefore, it can be further developed for porous materials applications.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"119 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Preparation of feedstock containing water-soluble binder for powder injection moulding of silver\",\"authors\":\"C. Aumnate, Nithiwach Nawaukkaratharnant, N. Chuankrerkkul\",\"doi\":\"10.55713/jmmm.v32i3.1271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feedstock for powder injection moulding of silver was prepared using water-soluble binder composed of polyethylene glycol (PEG) and polyvinyl butyrol (PVB). Silver powders with particle size in range of 1 μm to 20 μm can be mixed with PEG/PVB binder system to form feedstocks having powder loadings of 42 vol% and 45 vol%. PEG can be removed using water leaching method while PVB can be removed by thermal debinding. Specimens retained their shapes during debinding and after debinding. Components fabricated with relatively higher powder loading resulted in higher density with lower porosity. Density of specimens containing powder loading of 42 vol% and 45 vol% and heated at 700℃ is about 43% and 46% of the theoretical value, respectively. Therefore, it can be further developed for porous materials applications.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v32i3.1271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v32i3.1271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of feedstock containing water-soluble binder for powder injection moulding of silver
Feedstock for powder injection moulding of silver was prepared using water-soluble binder composed of polyethylene glycol (PEG) and polyvinyl butyrol (PVB). Silver powders with particle size in range of 1 μm to 20 μm can be mixed with PEG/PVB binder system to form feedstocks having powder loadings of 42 vol% and 45 vol%. PEG can be removed using water leaching method while PVB can be removed by thermal debinding. Specimens retained their shapes during debinding and after debinding. Components fabricated with relatively higher powder loading resulted in higher density with lower porosity. Density of specimens containing powder loading of 42 vol% and 45 vol% and heated at 700℃ is about 43% and 46% of the theoretical value, respectively. Therefore, it can be further developed for porous materials applications.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.