{"title":"基于深度学习的网络入侵检测性能分析与特征选择","authors":"Serhat Caner, N. Erdogmus, Y. M. Erten","doi":"10.3906/elk-2104-50","DOIUrl":null,"url":null,"abstract":"An intrusion detection system is an automated monitoring tool that analyzes network traffic and detects malicious activities by looking out either for known patterns of attacks or for an anomaly. In this study, intrusion detection and classification performances of different deep learning based systems are examined. For this purpose, 24 deep neural networks with four different architectures are trained and evaluated on CICIDS2017 dataset. Furthermore, the best performing model is utilized to inspect raw network traffic features and rank them with respect to their contributions to success rates. By selecting features with respect to their ranks, sets of varying size from 3 to 77 are assessed in terms of classification accuracy and time efficiency. The results show that recurrent neural networks with a certain level of complexity can achieve comparable success rates with state-of-the-art systems using a small feature set of size 9; while the average time required to classify a test sample is halved compared to the complete set.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"7 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis and feature selection for network-based intrusion detection with deep learning\",\"authors\":\"Serhat Caner, N. Erdogmus, Y. M. Erten\",\"doi\":\"10.3906/elk-2104-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An intrusion detection system is an automated monitoring tool that analyzes network traffic and detects malicious activities by looking out either for known patterns of attacks or for an anomaly. In this study, intrusion detection and classification performances of different deep learning based systems are examined. For this purpose, 24 deep neural networks with four different architectures are trained and evaluated on CICIDS2017 dataset. Furthermore, the best performing model is utilized to inspect raw network traffic features and rank them with respect to their contributions to success rates. By selecting features with respect to their ranks, sets of varying size from 3 to 77 are assessed in terms of classification accuracy and time efficiency. The results show that recurrent neural networks with a certain level of complexity can achieve comparable success rates with state-of-the-art systems using a small feature set of size 9; while the average time required to classify a test sample is halved compared to the complete set.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3906/elk-2104-50\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/elk-2104-50","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Performance analysis and feature selection for network-based intrusion detection with deep learning
An intrusion detection system is an automated monitoring tool that analyzes network traffic and detects malicious activities by looking out either for known patterns of attacks or for an anomaly. In this study, intrusion detection and classification performances of different deep learning based systems are examined. For this purpose, 24 deep neural networks with four different architectures are trained and evaluated on CICIDS2017 dataset. Furthermore, the best performing model is utilized to inspect raw network traffic features and rank them with respect to their contributions to success rates. By selecting features with respect to their ranks, sets of varying size from 3 to 77 are assessed in terms of classification accuracy and time efficiency. The results show that recurrent neural networks with a certain level of complexity can achieve comparable success rates with state-of-the-art systems using a small feature set of size 9; while the average time required to classify a test sample is halved compared to the complete set.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.