同行评议:分布式系统的实际责任

Andreas Haeberlen, P. Kuznetsov, P. Druschel
{"title":"同行评议:分布式系统的实际责任","authors":"Andreas Haeberlen, P. Kuznetsov, P. Druschel","doi":"10.1145/1294261.1294279","DOIUrl":null,"url":null,"abstract":"We describe PeerReview, a system that provides accountability in distributed systems. PeerReview ensures that Byzantine faults whose effects are observed by a correct node are eventually detected and irrefutably linked to a faulty node. At the same time, PeerReview ensures that a correct node can always defend itself against false accusations. These guarantees are particularly important for systems that span multiple administrative domains, which may not trust each other.PeerReview works by maintaining a secure record of the messages sent and received by each node. The record isused to automatically detect when a node's behavior deviates from that of a given reference implementation, thus exposing faulty nodes. PeerReview is widely applicable: it only requires that a correct node's actions are deterministic, that nodes can sign messages, and that each node is periodically checked by a correct node. We demonstrate that PeerReview is practical by applying it to three different types of distributed systems: a network filesystem, a peer-to-peer system, and an overlay multicast system.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"135 1","pages":"175-188"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"431","resultStr":"{\"title\":\"PeerReview: practical accountability for distributed systems\",\"authors\":\"Andreas Haeberlen, P. Kuznetsov, P. Druschel\",\"doi\":\"10.1145/1294261.1294279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe PeerReview, a system that provides accountability in distributed systems. PeerReview ensures that Byzantine faults whose effects are observed by a correct node are eventually detected and irrefutably linked to a faulty node. At the same time, PeerReview ensures that a correct node can always defend itself against false accusations. These guarantees are particularly important for systems that span multiple administrative domains, which may not trust each other.PeerReview works by maintaining a secure record of the messages sent and received by each node. The record isused to automatically detect when a node's behavior deviates from that of a given reference implementation, thus exposing faulty nodes. PeerReview is widely applicable: it only requires that a correct node's actions are deterministic, that nodes can sign messages, and that each node is periodically checked by a correct node. We demonstrate that PeerReview is practical by applying it to three different types of distributed systems: a network filesystem, a peer-to-peer system, and an overlay multicast system.\",\"PeriodicalId\":20672,\"journal\":{\"name\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"volume\":\"135 1\",\"pages\":\"175-188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"431\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1294261.1294279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1294261.1294279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 431

摘要

我们描述了PeerReview,一个在分布式系统中提供问责制的系统。PeerReview确保拜占庭故障的影响被一个正确的节点观察到,最终被检测到,并无可辩驳地链接到一个故障节点。同时,PeerReview确保一个正确的节点总是能够保护自己免受错误的指控。这些保证对于跨越多个管理域的系统尤其重要,因为这些系统可能互不信任。PeerReview的工作原理是维护每个节点发送和接收的消息的安全记录。该记录用于自动检测节点的行为何时偏离给定参考实现的行为,从而暴露错误节点。PeerReview是广泛适用的:它只要求一个正确的节点的动作是确定的,节点可以签署消息,并且每个节点由一个正确的节点定期检查。我们通过将PeerReview应用于三种不同类型的分布式系统来证明它是实用的:网络文件系统、点对点系统和覆盖多播系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PeerReview: practical accountability for distributed systems
We describe PeerReview, a system that provides accountability in distributed systems. PeerReview ensures that Byzantine faults whose effects are observed by a correct node are eventually detected and irrefutably linked to a faulty node. At the same time, PeerReview ensures that a correct node can always defend itself against false accusations. These guarantees are particularly important for systems that span multiple administrative domains, which may not trust each other.PeerReview works by maintaining a secure record of the messages sent and received by each node. The record isused to automatically detect when a node's behavior deviates from that of a given reference implementation, thus exposing faulty nodes. PeerReview is widely applicable: it only requires that a correct node's actions are deterministic, that nodes can sign messages, and that each node is periodically checked by a correct node. We demonstrate that PeerReview is practical by applying it to three different types of distributed systems: a network filesystem, a peer-to-peer system, and an overlay multicast system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ResilientFL '21: Proceedings of the First Workshop on Systems Challenges in Reliable and Secure Federated Learning, Virtual Event / Koblenz, Germany, 25 October 2021 SOSP '21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021 Application Performance Monitoring: Trade-Off between Overhead Reduction and Maintainability Efficient deterministic multithreading through schedule relaxation SILT: a memory-efficient, high-performance key-value store
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1