不同粉碎温度下水牛肉丸的质量评价

IF 0.8 Q3 MULTIDISCIPLINARY SCIENCES Malaysian Journal of Fundamental and Applied Sciences Pub Date : 2023-08-27 DOI:10.11113/mjfas.v19n4.2946
Lim Jwee Yie, N. I. Khalid, M. R. Ismail‐Fitry
{"title":"不同粉碎温度下水牛肉丸的质量评价","authors":"Lim Jwee Yie, N. I. Khalid, M. R. Ismail‐Fitry","doi":"10.11113/mjfas.v19n4.2946","DOIUrl":null,"url":null,"abstract":"Buffalo meatballs were formulated and the effects of different comminution temperatures on the quality (cooking yield, water holding capacity (WHC), protein, texture, colour, and sensory) were evaluated. During the mixing of ingredients, the comminution temperature was adjusted using different types of water which were ice (0°C), ice water (4°C), cold water (10°C), room temperature water (22°C), and warm water (32°C). Following comminution for 3 minutes, the temperatures of the batters were recorded at 14, 25, 25, 29, and 27°C, respectively. The comminution took a total of 15 minutes had produced batters with similar final temperatures (ranging from 36 to 38°C), except ice temperature mixing (28°C). Cold water meatballs produced the highest cooking yield but significantly the lowest (P<0.05) water-holding capacity. The colour of the cold water meatball shows significantly (P<0.05) the highest L* (lightness), significantly (P>0.05) the lowest a* (redness), and the lowest b* (yellowness) values. While the textures (hardness, cohesiveness, gumminess, chewiness, and springiness) of all meatballs were similar (P>0.05). All meatball samples had nearly similar soluble protein concentrations (0.97 to 1.06 ug/ml) but ice water meatballs had the highest (P<0.05). The panellists gave all the meatballs a score ranging from 6.32 to 6.98, with ice meatballs receiving the highest mean score (6.98) acceptability score (P>0.05). In conclusion, comminuted buffalo meatballs can be produced using either ice, ice water, cold water, room temperature water, or warm water without affecting their quality. However, ice is suggested for safety purposes against microbial growth during processing.","PeriodicalId":18149,"journal":{"name":"Malaysian Journal of Fundamental and Applied Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality Evaluation of Buffalo Meatballs Produced at Different Comminution Process Temperatures\",\"authors\":\"Lim Jwee Yie, N. I. Khalid, M. R. Ismail‐Fitry\",\"doi\":\"10.11113/mjfas.v19n4.2946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Buffalo meatballs were formulated and the effects of different comminution temperatures on the quality (cooking yield, water holding capacity (WHC), protein, texture, colour, and sensory) were evaluated. During the mixing of ingredients, the comminution temperature was adjusted using different types of water which were ice (0°C), ice water (4°C), cold water (10°C), room temperature water (22°C), and warm water (32°C). Following comminution for 3 minutes, the temperatures of the batters were recorded at 14, 25, 25, 29, and 27°C, respectively. The comminution took a total of 15 minutes had produced batters with similar final temperatures (ranging from 36 to 38°C), except ice temperature mixing (28°C). Cold water meatballs produced the highest cooking yield but significantly the lowest (P<0.05) water-holding capacity. The colour of the cold water meatball shows significantly (P<0.05) the highest L* (lightness), significantly (P>0.05) the lowest a* (redness), and the lowest b* (yellowness) values. While the textures (hardness, cohesiveness, gumminess, chewiness, and springiness) of all meatballs were similar (P>0.05). All meatball samples had nearly similar soluble protein concentrations (0.97 to 1.06 ug/ml) but ice water meatballs had the highest (P<0.05). The panellists gave all the meatballs a score ranging from 6.32 to 6.98, with ice meatballs receiving the highest mean score (6.98) acceptability score (P>0.05). In conclusion, comminuted buffalo meatballs can be produced using either ice, ice water, cold water, room temperature water, or warm water without affecting their quality. However, ice is suggested for safety purposes against microbial growth during processing.\",\"PeriodicalId\":18149,\"journal\":{\"name\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Fundamental and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/mjfas.v19n4.2946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Fundamental and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/mjfas.v19n4.2946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

以水牛肉丸为原料,研究了不同粉碎温度对肉丸质量(蒸煮率、持水量、蛋白质、质地、颜色和感官)的影响。在配料混合过程中,使用不同类型的水来调节粉碎温度,分别是冰(0℃)、冰水(4℃)、冷水(10℃)、室温水(22℃)和温水(32℃)。粉碎3分钟后,记录电池温度分别为14、25、25、29和27℃。粉碎总共花了15分钟,除了冰温混合(28°C)外,产生的电池的最终温度相似(范围从36°C到38°C)。冷水肉丸的蒸煮得率最高,但最低a*(红度)值和最低b*(黄度)值显著最低(P0.05)。而肉丸的质地(硬度、内聚性、胶性、嚼劲和弹性)基本相同(P>0.05)。所有肉丸样品的可溶性蛋白浓度几乎相同(0.97 ~ 1.06 ug/ml),但冰水肉丸的可溶性蛋白浓度最高(P0.05)。总之,水肉丸粉可以用冰、冰水、冷水、室温水或温水生产,而不会影响其质量。但是,为了防止加工过程中微生物的生长,建议使用冰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality Evaluation of Buffalo Meatballs Produced at Different Comminution Process Temperatures
Buffalo meatballs were formulated and the effects of different comminution temperatures on the quality (cooking yield, water holding capacity (WHC), protein, texture, colour, and sensory) were evaluated. During the mixing of ingredients, the comminution temperature was adjusted using different types of water which were ice (0°C), ice water (4°C), cold water (10°C), room temperature water (22°C), and warm water (32°C). Following comminution for 3 minutes, the temperatures of the batters were recorded at 14, 25, 25, 29, and 27°C, respectively. The comminution took a total of 15 minutes had produced batters with similar final temperatures (ranging from 36 to 38°C), except ice temperature mixing (28°C). Cold water meatballs produced the highest cooking yield but significantly the lowest (P<0.05) water-holding capacity. The colour of the cold water meatball shows significantly (P<0.05) the highest L* (lightness), significantly (P>0.05) the lowest a* (redness), and the lowest b* (yellowness) values. While the textures (hardness, cohesiveness, gumminess, chewiness, and springiness) of all meatballs were similar (P>0.05). All meatball samples had nearly similar soluble protein concentrations (0.97 to 1.06 ug/ml) but ice water meatballs had the highest (P<0.05). The panellists gave all the meatballs a score ranging from 6.32 to 6.98, with ice meatballs receiving the highest mean score (6.98) acceptability score (P>0.05). In conclusion, comminuted buffalo meatballs can be produced using either ice, ice water, cold water, room temperature water, or warm water without affecting their quality. However, ice is suggested for safety purposes against microbial growth during processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
45
期刊最新文献
A Review on Synthesis and Physicochemical Properties-Photocatalytic Activity Relationships of Carbon Quantum Dots Graphitic Carbon Nitride in Reduction of Carbon Dioxide A Multi-Criteria Generalised L-R Intuitionistic Fuzzy TOPSIS with CRITIC for River Water Pollution Classification Phytochemical Screening and Antioxidant Activities of Geniotrigona thoracica Propolis Extracts Derived from Different Locations in Malaysia Two-Dimensional Heavy Metal Migration in Soil with Adsorption and Instantaneous Injection Fuzzy Intuitionistic Alpha-cut Interpolation Rational Bézier Curve Modeling for Shoreline Island Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1