{"title":"生物启发数据优化技术的关键审查:图像隐写分析的角度","authors":"Anita Christaline Johnvictor, Austin Joe Amalanathan, Ramya Meghana Pariti Venkata, Nishtha Jethi","doi":"10.1002/widm.1460","DOIUrl":null,"url":null,"abstract":"Image steganalysis involves the discovery of secret information embedded in an image. The common method is blind image steganalysis, which is a two‐class classification problem. Blind steganalysis extracts all possible feature variations in an image due to embedding, select the most appropriate feature data, and then classifies the image. The dimensionality of the extracted image features are high and demand data reduction to identify the most relevant features and to aid accurate classification of an image. The classification is under two classes namely, clean (cover) image and stego (image with embedded secret data) image. Since the classification accuracy depends on selection of most appropriate features, opting for the best data reduction or data optimization algorithms becomes a prime requisite. Research shows that most of the statistical optimization techniques converge to local minima and lead to less classification accuracy as compared to bio‐inspired methods. Bio‐inspired optimization methods obtain improved classification accuracy by reducing the high‐dimensional image features. These methods start with an initial population and then optimize them in steps till a global optimal point is reached. Examples of such methods include Ant Lion Optimization (ALO), Fire Fly Algorithm (FFA), and literature shows around 54 such algorithms. Bio‐inspired optimization has been applied in various fields of design optimization and is novel to image steganalysis. This article analyses the various bio‐inspired optimization techniques and their accuracy in image steganalysis pertaining to the discovery of embedded information in both JPEG and spatial domain steganalysis.","PeriodicalId":48970,"journal":{"name":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","volume":"20 1","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical review of bio‐inspired data optimization techniques: An image steganalysis perspective\",\"authors\":\"Anita Christaline Johnvictor, Austin Joe Amalanathan, Ramya Meghana Pariti Venkata, Nishtha Jethi\",\"doi\":\"10.1002/widm.1460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image steganalysis involves the discovery of secret information embedded in an image. The common method is blind image steganalysis, which is a two‐class classification problem. Blind steganalysis extracts all possible feature variations in an image due to embedding, select the most appropriate feature data, and then classifies the image. The dimensionality of the extracted image features are high and demand data reduction to identify the most relevant features and to aid accurate classification of an image. The classification is under two classes namely, clean (cover) image and stego (image with embedded secret data) image. Since the classification accuracy depends on selection of most appropriate features, opting for the best data reduction or data optimization algorithms becomes a prime requisite. Research shows that most of the statistical optimization techniques converge to local minima and lead to less classification accuracy as compared to bio‐inspired methods. Bio‐inspired optimization methods obtain improved classification accuracy by reducing the high‐dimensional image features. These methods start with an initial population and then optimize them in steps till a global optimal point is reached. Examples of such methods include Ant Lion Optimization (ALO), Fire Fly Algorithm (FFA), and literature shows around 54 such algorithms. Bio‐inspired optimization has been applied in various fields of design optimization and is novel to image steganalysis. This article analyses the various bio‐inspired optimization techniques and their accuracy in image steganalysis pertaining to the discovery of embedded information in both JPEG and spatial domain steganalysis.\",\"PeriodicalId\":48970,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2022-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1460\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/widm.1460","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Critical review of bio‐inspired data optimization techniques: An image steganalysis perspective
Image steganalysis involves the discovery of secret information embedded in an image. The common method is blind image steganalysis, which is a two‐class classification problem. Blind steganalysis extracts all possible feature variations in an image due to embedding, select the most appropriate feature data, and then classifies the image. The dimensionality of the extracted image features are high and demand data reduction to identify the most relevant features and to aid accurate classification of an image. The classification is under two classes namely, clean (cover) image and stego (image with embedded secret data) image. Since the classification accuracy depends on selection of most appropriate features, opting for the best data reduction or data optimization algorithms becomes a prime requisite. Research shows that most of the statistical optimization techniques converge to local minima and lead to less classification accuracy as compared to bio‐inspired methods. Bio‐inspired optimization methods obtain improved classification accuracy by reducing the high‐dimensional image features. These methods start with an initial population and then optimize them in steps till a global optimal point is reached. Examples of such methods include Ant Lion Optimization (ALO), Fire Fly Algorithm (FFA), and literature shows around 54 such algorithms. Bio‐inspired optimization has been applied in various fields of design optimization and is novel to image steganalysis. This article analyses the various bio‐inspired optimization techniques and their accuracy in image steganalysis pertaining to the discovery of embedded information in both JPEG and spatial domain steganalysis.
期刊介绍:
The goals of Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery (WIREs DMKD) are multifaceted. Firstly, the journal aims to provide a comprehensive overview of the current state of data mining and knowledge discovery by featuring ongoing reviews authored by leading researchers. Secondly, it seeks to highlight the interdisciplinary nature of the field by presenting articles from diverse perspectives, covering various application areas such as technology, business, healthcare, education, government, society, and culture. Thirdly, WIREs DMKD endeavors to keep pace with the rapid advancements in data mining and knowledge discovery through regular content updates. Lastly, the journal strives to promote active engagement in the field by presenting its accomplishments and challenges in an accessible manner to a broad audience. The content of WIREs DMKD is intended to benefit upper-level undergraduate and postgraduate students, teaching and research professors in academic programs, as well as scientists and research managers in industry.