W. F. Teixeira, L. H. Soares, K. Reichardt, D. D. Neto
{"title":"甘氨酸在亏水大豆植株上的应用","authors":"W. F. Teixeira, L. H. Soares, K. Reichardt, D. D. Neto","doi":"10.21475/ajcs.21.15.10.p3159","DOIUrl":null,"url":null,"abstract":"Soybean is one of the most important crops in the world. Studies are necessary to improve its productivity, especially in stress environments. Therefore, the objective of this study was to evaluate the effect of glycine as seed treatment to soybean plants submitted to water deficiency, using twelve replicates per treatment. Glycine was applied at a dose of 9 mg kg-1 of seeds under high water deficit (performed at stage V4) and without water deficiency. Root development, antioxidant metabolism and dry mass accumulation of plants were evaluated. Results showed that the application of glycine to plants that were not subjected to water deficiency, promoted the increase of root development, accumulation of mass and reduction of stress in plants. This reflected in 10% increase in productivity compared to the control treatment. On the other hand, plants with glycine application subjected to water deficiency showed a reduction in dry mass accumulation and root development, indicating that these plants suffered the effect of stress. Untreated plants submitted to water deficiency showed symptoms of stress such as reduced accumulation of mass and productivity by 12%. Therefore, the present study reports that the application of glycine on seeds is not very efficient for attenuating stress in soybean plants submitted to water deficiency. However, in environments without water deficiency, the application of glycine on seeds affects the greater development of the plant and increased productivity","PeriodicalId":10904,"journal":{"name":"Day 2 Tue, October 19, 2021","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of glycine on soybean plants submitted to water deficit\",\"authors\":\"W. F. Teixeira, L. H. Soares, K. Reichardt, D. D. Neto\",\"doi\":\"10.21475/ajcs.21.15.10.p3159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soybean is one of the most important crops in the world. Studies are necessary to improve its productivity, especially in stress environments. Therefore, the objective of this study was to evaluate the effect of glycine as seed treatment to soybean plants submitted to water deficiency, using twelve replicates per treatment. Glycine was applied at a dose of 9 mg kg-1 of seeds under high water deficit (performed at stage V4) and without water deficiency. Root development, antioxidant metabolism and dry mass accumulation of plants were evaluated. Results showed that the application of glycine to plants that were not subjected to water deficiency, promoted the increase of root development, accumulation of mass and reduction of stress in plants. This reflected in 10% increase in productivity compared to the control treatment. On the other hand, plants with glycine application subjected to water deficiency showed a reduction in dry mass accumulation and root development, indicating that these plants suffered the effect of stress. Untreated plants submitted to water deficiency showed symptoms of stress such as reduced accumulation of mass and productivity by 12%. Therefore, the present study reports that the application of glycine on seeds is not very efficient for attenuating stress in soybean plants submitted to water deficiency. However, in environments without water deficiency, the application of glycine on seeds affects the greater development of the plant and increased productivity\",\"PeriodicalId\":10904,\"journal\":{\"name\":\"Day 2 Tue, October 19, 2021\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, October 19, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21475/ajcs.21.15.10.p3159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 19, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/ajcs.21.15.10.p3159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of glycine on soybean plants submitted to water deficit
Soybean is one of the most important crops in the world. Studies are necessary to improve its productivity, especially in stress environments. Therefore, the objective of this study was to evaluate the effect of glycine as seed treatment to soybean plants submitted to water deficiency, using twelve replicates per treatment. Glycine was applied at a dose of 9 mg kg-1 of seeds under high water deficit (performed at stage V4) and without water deficiency. Root development, antioxidant metabolism and dry mass accumulation of plants were evaluated. Results showed that the application of glycine to plants that were not subjected to water deficiency, promoted the increase of root development, accumulation of mass and reduction of stress in plants. This reflected in 10% increase in productivity compared to the control treatment. On the other hand, plants with glycine application subjected to water deficiency showed a reduction in dry mass accumulation and root development, indicating that these plants suffered the effect of stress. Untreated plants submitted to water deficiency showed symptoms of stress such as reduced accumulation of mass and productivity by 12%. Therefore, the present study reports that the application of glycine on seeds is not very efficient for attenuating stress in soybean plants submitted to water deficiency. However, in environments without water deficiency, the application of glycine on seeds affects the greater development of the plant and increased productivity