碳酸盐储层复合纳米辅助聚合物提高采收率方法的实验室研究

M. Zhangaliyev, M. Hashmet, P. Pourafshary
{"title":"碳酸盐储层复合纳米辅助聚合物提高采收率方法的实验室研究","authors":"M. Zhangaliyev, M. Hashmet, P. Pourafshary","doi":"10.4043/31398-ms","DOIUrl":null,"url":null,"abstract":"\n Currently, there has been a surge in evaluating the effectiveness of various hybrid enhanced oil recovery (EOR) methods as they combine the benefits of standalone processes. This study focuses on laboratory investigation to evaluate synergy between polymer and nanoparticles (NP), as their combination can simultaneously alter capillary and viscous forces.\n N-vinyl-pyrrolidone-based partially hydrolyzed polyacrylamide and silica oxide nanoparticles are used in this study. The standalone polymer, nanofluid (NF), and combined polymer-nanofluid solutions are prepared in different salinities (1200-40,000 ppm). The zeta potential of solutions is measured to determine the stability of NF at various salinities. Contact angle measurements are performed to determine the optimum concentration of NP. A series of rheological experiments are accomplished at different nanoparticle concentrations (0.05, 0.1, 0.15 wt%), temperatures (25-80 °C), and polymer concentrations (500 to 3000 ppm). Additionally, a long-term stability test was conducted over thirty days at 80°C on nano-assisted-polymer fluid over a long period.\n Zeta potential results proved that the stability of nanofluids decreases with an increase in solution salinity. However, the addition of polymer has a positive impact on the stability of NF and is stable up to 40 000 ppm salinity. The nanoparticles have shown potential in altering the wettability of the rock toward the intermediate wet conditions. A maximum deviation of 55° in contact angle is observed for a 0.1 wt% NP solution and is selected as optimum concentration. Rheology studies illustrate that the addition of NP increases the viscosity of the polymer solution by 25%. All nano-assisted-polymer solutions tested in this study showed shear thinning behavior. Long-term thermal stability of nano-assisted-polymer solution indicates that the solution achieves equilibrium after 5 days and maintains target viscosity of 4 cP.\n The addition of polymer has positively impacted the salinity tolerance of nanoparticles. Additionally, nanoparticles improved the viscosity of the polymer solution. This study will open new doors for the hybrid EOR method.","PeriodicalId":11217,"journal":{"name":"Day 4 Fri, March 25, 2022","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Laboratory Investigation of Hybrid Nano-Assisted-Polymer Method for EOR Applications in Carbonate Reservoirs\",\"authors\":\"M. Zhangaliyev, M. Hashmet, P. Pourafshary\",\"doi\":\"10.4043/31398-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Currently, there has been a surge in evaluating the effectiveness of various hybrid enhanced oil recovery (EOR) methods as they combine the benefits of standalone processes. This study focuses on laboratory investigation to evaluate synergy between polymer and nanoparticles (NP), as their combination can simultaneously alter capillary and viscous forces.\\n N-vinyl-pyrrolidone-based partially hydrolyzed polyacrylamide and silica oxide nanoparticles are used in this study. The standalone polymer, nanofluid (NF), and combined polymer-nanofluid solutions are prepared in different salinities (1200-40,000 ppm). The zeta potential of solutions is measured to determine the stability of NF at various salinities. Contact angle measurements are performed to determine the optimum concentration of NP. A series of rheological experiments are accomplished at different nanoparticle concentrations (0.05, 0.1, 0.15 wt%), temperatures (25-80 °C), and polymer concentrations (500 to 3000 ppm). Additionally, a long-term stability test was conducted over thirty days at 80°C on nano-assisted-polymer fluid over a long period.\\n Zeta potential results proved that the stability of nanofluids decreases with an increase in solution salinity. However, the addition of polymer has a positive impact on the stability of NF and is stable up to 40 000 ppm salinity. The nanoparticles have shown potential in altering the wettability of the rock toward the intermediate wet conditions. A maximum deviation of 55° in contact angle is observed for a 0.1 wt% NP solution and is selected as optimum concentration. Rheology studies illustrate that the addition of NP increases the viscosity of the polymer solution by 25%. All nano-assisted-polymer solutions tested in this study showed shear thinning behavior. Long-term thermal stability of nano-assisted-polymer solution indicates that the solution achieves equilibrium after 5 days and maintains target viscosity of 4 cP.\\n The addition of polymer has positively impacted the salinity tolerance of nanoparticles. Additionally, nanoparticles improved the viscosity of the polymer solution. This study will open new doors for the hybrid EOR method.\",\"PeriodicalId\":11217,\"journal\":{\"name\":\"Day 4 Fri, March 25, 2022\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Fri, March 25, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31398-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Fri, March 25, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31398-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

目前,各种混合提高采收率(EOR)方法的有效性评估激增,因为它们结合了独立过程的优点。本研究的重点是实验室研究,以评估聚合物和纳米颗粒(NP)之间的协同作用,因为它们的组合可以同时改变毛细管力和粘性力。n -乙烯基吡咯烷酮基部分水解聚丙烯酰胺和二氧化硅纳米颗粒用于本研究。在不同的盐度(1200- 40000 ppm)下制备单独的聚合物、纳米流体(NF)和聚合物-纳米流体组合溶液。通过测定溶液的zeta电位来确定NF在不同盐度下的稳定性。进行接触角测量以确定NP的最佳浓度。在不同的纳米颗粒浓度(0.05,0.1,0.15 wt%),温度(25-80°C)和聚合物浓度(500至3000 ppm)下完成了一系列流变学实验。此外,在80°C条件下,对纳米辅助聚合物流体进行了长达30天的长期稳定性测试。Zeta电位结果表明,纳米流体的稳定性随着溶液盐度的增加而降低。然而,聚合物的加入对NF的稳定性有积极的影响,并且在40000 ppm的盐度下稳定。纳米颗粒在改变岩石的润湿性向中间湿润条件方面显示出潜力。对于0.1 wt% NP溶液,观察到接触角的最大偏差为55°,并选择最佳浓度。流变学研究表明,NP的加入使聚合物溶液的粘度提高了25%。在本研究中测试的所有纳米辅助聚合物溶液都表现出剪切变薄的行为。纳米辅助聚合物溶液的长期热稳定性表明,溶液在5天后达到平衡,并保持4 cP的目标粘度。聚合物的加入对纳米颗粒的耐盐性有积极的影响。此外,纳米颗粒提高了聚合物溶液的粘度。这项研究将为混合EOR方法打开新的大门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laboratory Investigation of Hybrid Nano-Assisted-Polymer Method for EOR Applications in Carbonate Reservoirs
Currently, there has been a surge in evaluating the effectiveness of various hybrid enhanced oil recovery (EOR) methods as they combine the benefits of standalone processes. This study focuses on laboratory investigation to evaluate synergy between polymer and nanoparticles (NP), as their combination can simultaneously alter capillary and viscous forces. N-vinyl-pyrrolidone-based partially hydrolyzed polyacrylamide and silica oxide nanoparticles are used in this study. The standalone polymer, nanofluid (NF), and combined polymer-nanofluid solutions are prepared in different salinities (1200-40,000 ppm). The zeta potential of solutions is measured to determine the stability of NF at various salinities. Contact angle measurements are performed to determine the optimum concentration of NP. A series of rheological experiments are accomplished at different nanoparticle concentrations (0.05, 0.1, 0.15 wt%), temperatures (25-80 °C), and polymer concentrations (500 to 3000 ppm). Additionally, a long-term stability test was conducted over thirty days at 80°C on nano-assisted-polymer fluid over a long period. Zeta potential results proved that the stability of nanofluids decreases with an increase in solution salinity. However, the addition of polymer has a positive impact on the stability of NF and is stable up to 40 000 ppm salinity. The nanoparticles have shown potential in altering the wettability of the rock toward the intermediate wet conditions. A maximum deviation of 55° in contact angle is observed for a 0.1 wt% NP solution and is selected as optimum concentration. Rheology studies illustrate that the addition of NP increases the viscosity of the polymer solution by 25%. All nano-assisted-polymer solutions tested in this study showed shear thinning behavior. Long-term thermal stability of nano-assisted-polymer solution indicates that the solution achieves equilibrium after 5 days and maintains target viscosity of 4 cP. The addition of polymer has positively impacted the salinity tolerance of nanoparticles. Additionally, nanoparticles improved the viscosity of the polymer solution. This study will open new doors for the hybrid EOR method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cost Effective Framework of Integrated Development of Offshore Marginal Oilfields - Case Study of a Heavy Oil Reservoir with Thin Layers An Experimental Investigation into the Potential of a Green Alkali-Surfactant-Polymer Formulation for Enhanced Oil Recovery in Sandstone Reservoir World's First Arsenic in Condensate Removal for Oil & Gas Industry and its Universal Applications for Adsorption Facilities Digital Well Construction with Mud Motor Applications Coreflooding Experiments on PAM/PEI Polymer Gel for Water Control in High-Temperature and High-Pressure Conditions: With and Without Crossflow Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1