基于迁移学习的钙钛矿材料带隙预测

IF 0.8 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Acta Physica Sinica Pub Date : 2023-01-01 DOI:10.7498/aps.72.20231027
Sun Tao, Yuan Jian-Mei
{"title":"基于迁移学习的钙钛矿材料带隙预测","authors":"Sun Tao, Yuan Jian-Mei","doi":"10.7498/aps.72.20231027","DOIUrl":null,"url":null,"abstract":"The band gap is a key physical quantity in material design. First-principles calculations based on density functional theory can approximately predict the band gap, which often require significant computational resources and time. Deep learning models have the advantages of good fitting ability and automatic feature extraction from the data, and are gradually being applied to predict the band gap. In this paper, aiming at the problem of quickly obtaining the band gap value of perovskite materials, a feature fusion neural network model named CGCrabNet is established, and the transfer learning strategy is used to predict the band gap of perovskite materials. CGCrabNet extracts features from both chemical equation and crystal structure of materials, and fits the mapping between features and band gaps. It is an end-to-end neural network model. Based on the pre-training data obtained from the Open Quantum Materials Database (OQMD dataset), the CGCrabNet parameters can be fine-tuned by using only 175 perovskite material data to improve the robustness of the model.The numerical experimental results show that the prediction error of the CGCrabNet model for band gap prediciton based on the OQMD dataset is 0.014eV, which is lower than that obtained from the prediction based on Compositionally restricted attention-based network (CrabNet). The mean absolute error of the model developed in this paper for the prediction of perovskite materials is 0.374eV, which is lower 0.304eV, 0.441eV and 0.194eV than that obtained from random forest regression, support vector machine regression and gradient boosting regression, respectively. The mean absolute error of the test set of CGCrabNet trained only using perovskite data is 0.536 eV, and the mean absolute error of the pre-trained CGCrabNet has decreased by 0.162 eV, which indicates that the transfer learning strategy has significant role in improving the prediction accuracy of small data sets (perovskite material data sets). The difference between the predicted band gap of some perovskite materials such as SrHfO3and RbPaO3 by the model and the band gap calculated by first-principles is less than 0.05eV, which indicates that the CGCrabNet can quickly and accurately predict the properties of new materials and accelerate the development process of new materials.","PeriodicalId":6995,"journal":{"name":"Acta Physica Sinica","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Band gap prediction of perovskite materials based on transfer learning\",\"authors\":\"Sun Tao, Yuan Jian-Mei\",\"doi\":\"10.7498/aps.72.20231027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The band gap is a key physical quantity in material design. First-principles calculations based on density functional theory can approximately predict the band gap, which often require significant computational resources and time. Deep learning models have the advantages of good fitting ability and automatic feature extraction from the data, and are gradually being applied to predict the band gap. In this paper, aiming at the problem of quickly obtaining the band gap value of perovskite materials, a feature fusion neural network model named CGCrabNet is established, and the transfer learning strategy is used to predict the band gap of perovskite materials. CGCrabNet extracts features from both chemical equation and crystal structure of materials, and fits the mapping between features and band gaps. It is an end-to-end neural network model. Based on the pre-training data obtained from the Open Quantum Materials Database (OQMD dataset), the CGCrabNet parameters can be fine-tuned by using only 175 perovskite material data to improve the robustness of the model.The numerical experimental results show that the prediction error of the CGCrabNet model for band gap prediciton based on the OQMD dataset is 0.014eV, which is lower than that obtained from the prediction based on Compositionally restricted attention-based network (CrabNet). The mean absolute error of the model developed in this paper for the prediction of perovskite materials is 0.374eV, which is lower 0.304eV, 0.441eV and 0.194eV than that obtained from random forest regression, support vector machine regression and gradient boosting regression, respectively. The mean absolute error of the test set of CGCrabNet trained only using perovskite data is 0.536 eV, and the mean absolute error of the pre-trained CGCrabNet has decreased by 0.162 eV, which indicates that the transfer learning strategy has significant role in improving the prediction accuracy of small data sets (perovskite material data sets). The difference between the predicted band gap of some perovskite materials such as SrHfO3and RbPaO3 by the model and the band gap calculated by first-principles is less than 0.05eV, which indicates that the CGCrabNet can quickly and accurately predict the properties of new materials and accelerate the development process of new materials.\",\"PeriodicalId\":6995,\"journal\":{\"name\":\"Acta Physica Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Sinica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20231027\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.7498/aps.72.20231027","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

带隙是材料设计中的一个关键物理量。基于密度泛函理论的第一性原理计算可以近似地预测带隙,但往往需要大量的计算资源和时间。深度学习模型具有良好的拟合能力和从数据中自动提取特征的优点,正逐渐应用于带隙预测。本文针对快速获取钙钛矿材料带隙值的问题,建立了一种名为CGCrabNet的特征融合神经网络模型,并采用迁移学习策略对钙钛矿材料带隙进行预测。CGCrabNet从材料的化学方程和晶体结构中提取特征,并拟合特征与带隙之间的映射关系。这是一个端到端的神经网络模型。基于开放量子材料数据库(Open Quantum Materials Database, OQMD)的预训练数据,仅使用175个钙钛矿材料数据即可对CGCrabNet参数进行微调,提高模型的鲁棒性。数值实验结果表明,CGCrabNet模型对OQMD数据集的带隙预测误差为0.014eV,低于基于组合限制注意网络(compostional restricted attention-based network, CrabNet)的带隙预测误差。本文建立的钙钛矿材料预测模型的平均绝对误差为0.374eV,比随机森林回归、支持向量机回归和梯度增强回归分别低0.304eV、0.441eV和0.194eV。仅使用钙钛矿数据训练的CGCrabNet测试集的平均绝对误差为0.536 eV,预训练的CGCrabNet测试集的平均绝对误差降低了0.162 eV,表明迁移学习策略在提高小数据集(钙钛矿材料数据集)的预测精度方面有显著作用。模型预测的srhfo3和RbPaO3等钙钛矿材料带隙与第一原理计算的带隙相差小于0.05eV,表明CGCrabNet可以快速准确地预测新材料的性能,加快新材料的开发进程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Band gap prediction of perovskite materials based on transfer learning
The band gap is a key physical quantity in material design. First-principles calculations based on density functional theory can approximately predict the band gap, which often require significant computational resources and time. Deep learning models have the advantages of good fitting ability and automatic feature extraction from the data, and are gradually being applied to predict the band gap. In this paper, aiming at the problem of quickly obtaining the band gap value of perovskite materials, a feature fusion neural network model named CGCrabNet is established, and the transfer learning strategy is used to predict the band gap of perovskite materials. CGCrabNet extracts features from both chemical equation and crystal structure of materials, and fits the mapping between features and band gaps. It is an end-to-end neural network model. Based on the pre-training data obtained from the Open Quantum Materials Database (OQMD dataset), the CGCrabNet parameters can be fine-tuned by using only 175 perovskite material data to improve the robustness of the model.The numerical experimental results show that the prediction error of the CGCrabNet model for band gap prediciton based on the OQMD dataset is 0.014eV, which is lower than that obtained from the prediction based on Compositionally restricted attention-based network (CrabNet). The mean absolute error of the model developed in this paper for the prediction of perovskite materials is 0.374eV, which is lower 0.304eV, 0.441eV and 0.194eV than that obtained from random forest regression, support vector machine regression and gradient boosting regression, respectively. The mean absolute error of the test set of CGCrabNet trained only using perovskite data is 0.536 eV, and the mean absolute error of the pre-trained CGCrabNet has decreased by 0.162 eV, which indicates that the transfer learning strategy has significant role in improving the prediction accuracy of small data sets (perovskite material data sets). The difference between the predicted band gap of some perovskite materials such as SrHfO3and RbPaO3 by the model and the band gap calculated by first-principles is less than 0.05eV, which indicates that the CGCrabNet can quickly and accurately predict the properties of new materials and accelerate the development process of new materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Sinica
Acta Physica Sinica 物理-物理:综合
CiteScore
1.70
自引率
30.00%
发文量
31245
审稿时长
1.9 months
期刊介绍: Acta Physica Sinica (Acta Phys. Sin.) is supervised by Chinese Academy of Sciences and sponsored by Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences. Published by Chinese Physical Society and launched in 1933, it is a semimonthly journal with about 40 articles per issue. It publishes original and top quality research papers, rapid communications and reviews in all branches of physics in Chinese. Acta Phys. Sin. enjoys high reputation among Chinese physics journals and plays a key role in bridging China and rest of the world in physics research. Specific areas of interest include: Condensed matter and materials physics; Atomic, molecular, and optical physics; Statistical, nonlinear, and soft matter physics; Plasma physics; Interdisciplinary physics.
期刊最新文献
Simulation method of urban evacuation based on mesoscopic cellular automata Medium Correction to Gravitational Form Factors Research progress of applications of freestanding single crystal oxide thin film Research progress of ultra-high spatiotemporal resolved microscopy High-fidelity single-qubit gates of a strong driven singlet-triplet qubit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1