{"title":"基于路线图的追逃与避碰","authors":"Volkan Isler, Dengfeng Sun, S. Sastry","doi":"10.15607/RSS.2005.I.034","DOIUrl":null,"url":null,"abstract":"We study pursuit-evasion games for mobile robots and their applications to collision avoidance. In the first part of the paper, under the assumption that the pursuer and the evader (possibly subject to physical constraints) share the same roadmap to plan their strategies, we present sound and complete strategies for three different games. In the second part, we utilize the pursuit-evasion results to post-process the workspace and/or configuration space and obtain a collision probability map of the environment. Next, we present a probabilistic method to utilize this map and plan trajectories which minimize the collision probability for independent robots.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"5 1","pages":"257-264"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Roadmap Based Pursuit-Evasion and Collision Avoidance\",\"authors\":\"Volkan Isler, Dengfeng Sun, S. Sastry\",\"doi\":\"10.15607/RSS.2005.I.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study pursuit-evasion games for mobile robots and their applications to collision avoidance. In the first part of the paper, under the assumption that the pursuer and the evader (possibly subject to physical constraints) share the same roadmap to plan their strategies, we present sound and complete strategies for three different games. In the second part, we utilize the pursuit-evasion results to post-process the workspace and/or configuration space and obtain a collision probability map of the environment. Next, we present a probabilistic method to utilize this map and plan trajectories which minimize the collision probability for independent robots.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"5 1\",\"pages\":\"257-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Roadmap Based Pursuit-Evasion and Collision Avoidance
We study pursuit-evasion games for mobile robots and their applications to collision avoidance. In the first part of the paper, under the assumption that the pursuer and the evader (possibly subject to physical constraints) share the same roadmap to plan their strategies, we present sound and complete strategies for three different games. In the second part, we utilize the pursuit-evasion results to post-process the workspace and/or configuration space and obtain a collision probability map of the environment. Next, we present a probabilistic method to utilize this map and plan trajectories which minimize the collision probability for independent robots.