一种基于偶氮苯的光热储能系统,通过光诱导晶体到液体的转变来共同收集光子能量和低品位的环境热量

Liqi Dong, Fei Zhai, Hui Wang, Cong Peng, Yiyu Feng, Wei Feng
{"title":"一种基于偶氮苯的光热储能系统,通过光诱导晶体到液体的转变来共同收集光子能量和低品位的环境热量","authors":"Liqi Dong, Fei Zhai, Hui Wang, Cong Peng, Yiyu Feng, Wei Feng","doi":"10.20517/energymater.2022.26","DOIUrl":null,"url":null,"abstract":"Ambient heat, slightly above or at room temperature, is a ubiquitous and inexhaustible energy source that has typically been ignored due to difficulties in its utilization. Recent evidence suggests that a class of azobenzene (Azo) photoswitches featuring a reversible photoinduced crystal-to-liquid transition could co-harvest photon energy and ambient heat. Thus, a new horizon has been opened for recovering and regenerating low-grade ambient heat. Here, a series of unilateral para-functionalized photoinduced liquefiable Azo derivatives is presented that can co-harvest and convert photon energy and ambient heat into chemical bond energy and latent heat in molecules and eventually release them in the form of high-temperature utilizable heat. A straightforward crystalline-to-liquid phase transition achieved with ultraviolet light irradiation (365 nm) is enabled by appending a halogen/alkoxy group on the para-position of the Azo photoswitches, and the release of thermal energy is triggered by short-wavelength visible-light irradiation (420 nm). The phase transition properties of the trans- and cis-isomers and the energy density, storage lifetime and heat release performance of the cis-liquid are investigated with differential scanning calorimetry, ultraviolet-visible absorption spectroscopy, and an infrared (IR) thermal camera. The experimental results indicate a high energy density of 335 J/g, a long lifetime of 5 d and a heat release of up to 6.3 °C due to the coupled photochemical-thermophysical mechanism. This work presents a new model for utilizing renewable energy, i.e., the photoinduced conversion of ambient thermal energy.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An azobenzene-based photothermal energy storage system for co-harvesting photon energy and low-grade ambient heat via a photoinduced crystal-to-liquid transition\",\"authors\":\"Liqi Dong, Fei Zhai, Hui Wang, Cong Peng, Yiyu Feng, Wei Feng\",\"doi\":\"10.20517/energymater.2022.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ambient heat, slightly above or at room temperature, is a ubiquitous and inexhaustible energy source that has typically been ignored due to difficulties in its utilization. Recent evidence suggests that a class of azobenzene (Azo) photoswitches featuring a reversible photoinduced crystal-to-liquid transition could co-harvest photon energy and ambient heat. Thus, a new horizon has been opened for recovering and regenerating low-grade ambient heat. Here, a series of unilateral para-functionalized photoinduced liquefiable Azo derivatives is presented that can co-harvest and convert photon energy and ambient heat into chemical bond energy and latent heat in molecules and eventually release them in the form of high-temperature utilizable heat. A straightforward crystalline-to-liquid phase transition achieved with ultraviolet light irradiation (365 nm) is enabled by appending a halogen/alkoxy group on the para-position of the Azo photoswitches, and the release of thermal energy is triggered by short-wavelength visible-light irradiation (420 nm). The phase transition properties of the trans- and cis-isomers and the energy density, storage lifetime and heat release performance of the cis-liquid are investigated with differential scanning calorimetry, ultraviolet-visible absorption spectroscopy, and an infrared (IR) thermal camera. The experimental results indicate a high energy density of 335 J/g, a long lifetime of 5 d and a heat release of up to 6.3 °C due to the coupled photochemical-thermophysical mechanism. This work presents a new model for utilizing renewable energy, i.e., the photoinduced conversion of ambient thermal energy.\",\"PeriodicalId\":21863,\"journal\":{\"name\":\"Solar Energy Materials\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2022.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2022.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

略高于室温或室温的环境热是一种普遍存在的、取之不尽、用之不竭的能源,但由于其利用困难而通常被忽视。最近的证据表明,一类偶氮苯(Azo)光开关具有可逆的光诱导晶体到液体的转变,可以共同收集光子能量和环境热量。因此,为低品位环境热的回收和再生开辟了一个新的领域。本文提出了一系列单侧准功能化光致液化偶氮衍生物,它们可以共同收获光子能量和环境热量,并将其转化为分子中的化学键能和潜热,最终以高温可利用热的形式释放出来。通过在偶氮光开关的对位上附加卤素/烷氧基,在紫外光照射(365 nm)下实现了直接的结晶到液相转变,并通过短波长的可见光照射(420 nm)触发了热能的释放。利用差示扫描量热法、紫外-可见吸收光谱和红外热像仪研究了反式和顺式异构体的相变特性和顺式液体的能量密度、贮存寿命和顺式液体的放热性能。实验结果表明,由于光化学-热物理耦合机制,该材料的能量密度高达335 J/g,寿命长达5 d,放热温度高达6.3℃。本文提出了一种利用可再生能源的新模式,即环境热能的光诱导转换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An azobenzene-based photothermal energy storage system for co-harvesting photon energy and low-grade ambient heat via a photoinduced crystal-to-liquid transition
Ambient heat, slightly above or at room temperature, is a ubiquitous and inexhaustible energy source that has typically been ignored due to difficulties in its utilization. Recent evidence suggests that a class of azobenzene (Azo) photoswitches featuring a reversible photoinduced crystal-to-liquid transition could co-harvest photon energy and ambient heat. Thus, a new horizon has been opened for recovering and regenerating low-grade ambient heat. Here, a series of unilateral para-functionalized photoinduced liquefiable Azo derivatives is presented that can co-harvest and convert photon energy and ambient heat into chemical bond energy and latent heat in molecules and eventually release them in the form of high-temperature utilizable heat. A straightforward crystalline-to-liquid phase transition achieved with ultraviolet light irradiation (365 nm) is enabled by appending a halogen/alkoxy group on the para-position of the Azo photoswitches, and the release of thermal energy is triggered by short-wavelength visible-light irradiation (420 nm). The phase transition properties of the trans- and cis-isomers and the energy density, storage lifetime and heat release performance of the cis-liquid are investigated with differential scanning calorimetry, ultraviolet-visible absorption spectroscopy, and an infrared (IR) thermal camera. The experimental results indicate a high energy density of 335 J/g, a long lifetime of 5 d and a heat release of up to 6.3 °C due to the coupled photochemical-thermophysical mechanism. This work presents a new model for utilizing renewable energy, i.e., the photoinduced conversion of ambient thermal energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives Strategies towards inhibition of aluminum current collector corrosion in lithium batteries Efficient separation and selective Li recycling of spent LiFePO4 cathode Fluorine chemistry in lithium-ion and sodium-ion batteries PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1