B. L. Brock, Juliang Li, S. Kanhirathingal, B. Thyagarajan, W. Braasch, Miles Blencowe, A. Rimberg
{"title":"基于嵌入式铜对晶体管的非线性电荷和磁通可调谐腔","authors":"B. L. Brock, Juliang Li, S. Kanhirathingal, B. Thyagarajan, W. Braasch, Miles Blencowe, A. Rimberg","doi":"10.1103/PHYSREVAPPLIED.15.044009","DOIUrl":null,"url":null,"abstract":"We introduce the cavity-embedded Cooper pair transistor (cCPT), a device which behaves as a highly nonlinear microwave cavity whose resonant frequency can be tuned both by charging a gate capacitor and by threading flux through a SQUID loop. We characterize this device and find excellent agreement between theory and experiment. A key difficulty in this characterization is the presence of frequency fluctuations comparable in scale to the cavity linewidth, which deform our measured resonance circles in accordance with recent theoretical predictions [B. L. Brock et al., Phys. Rev. Applied (to be published), arXiv:1906.11989]. By measuring the power spectral density of these frequency fluctuations at carefully chosen points in parameter space, we find that they are primarily a result of the $1/f$ charge and flux noise common in solid state devices. Notably, we also observe key signatures of frequency fluctuations induced by quantum fluctuations in the cavity field via the Kerr nonlinearity.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Nonlinear Charge- and Flux-Tunable Cavity Derived From an Embedded Cooper-Pair Transistor\",\"authors\":\"B. L. Brock, Juliang Li, S. Kanhirathingal, B. Thyagarajan, W. Braasch, Miles Blencowe, A. Rimberg\",\"doi\":\"10.1103/PHYSREVAPPLIED.15.044009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the cavity-embedded Cooper pair transistor (cCPT), a device which behaves as a highly nonlinear microwave cavity whose resonant frequency can be tuned both by charging a gate capacitor and by threading flux through a SQUID loop. We characterize this device and find excellent agreement between theory and experiment. A key difficulty in this characterization is the presence of frequency fluctuations comparable in scale to the cavity linewidth, which deform our measured resonance circles in accordance with recent theoretical predictions [B. L. Brock et al., Phys. Rev. Applied (to be published), arXiv:1906.11989]. By measuring the power spectral density of these frequency fluctuations at carefully chosen points in parameter space, we find that they are primarily a result of the $1/f$ charge and flux noise common in solid state devices. Notably, we also observe key signatures of frequency fluctuations induced by quantum fluctuations in the cavity field via the Kerr nonlinearity.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVAPPLIED.15.044009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.044009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonlinear Charge- and Flux-Tunable Cavity Derived From an Embedded Cooper-Pair Transistor
We introduce the cavity-embedded Cooper pair transistor (cCPT), a device which behaves as a highly nonlinear microwave cavity whose resonant frequency can be tuned both by charging a gate capacitor and by threading flux through a SQUID loop. We characterize this device and find excellent agreement between theory and experiment. A key difficulty in this characterization is the presence of frequency fluctuations comparable in scale to the cavity linewidth, which deform our measured resonance circles in accordance with recent theoretical predictions [B. L. Brock et al., Phys. Rev. Applied (to be published), arXiv:1906.11989]. By measuring the power spectral density of these frequency fluctuations at carefully chosen points in parameter space, we find that they are primarily a result of the $1/f$ charge and flux noise common in solid state devices. Notably, we also observe key signatures of frequency fluctuations induced by quantum fluctuations in the cavity field via the Kerr nonlinearity.