{"title":"基于分解的分布式虚拟网络嵌入体系结构","authors":"Flavio Esposito, I. Matta","doi":"10.1145/2627566.2627569","DOIUrl":null,"url":null,"abstract":"Network protocols have historically been developed on an ad-hoc basis, and cloud computing is no exception. A fundamental management protocol, not yet standardized, that cloud providers need to run to support wide-area virtual network services is the virtual network (VN) embedding protocol.\n In this paper, we use decomposition theory to provide a unifying architecture for the VN embedding problem. We show how our architecture subsumes existing solutions, and how it can be used by cloud providers to design a distributed VN embedding protocol that adapts to different scenarios, by merely instantiating different decomposition policies. We analyze key representative tradeoffs via simulation, and with our VN embedding testbed that uses a Linux system architecture to reserve virtual node and link capacities. In contrast with existing VN embedding solutions, we found that partitioning a VN request not only increases the signaling overhead, but may decrease cloud providers' revenue.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"39 1","pages":"53-58"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A decomposition-based architecture for distributed virtual network embedding\",\"authors\":\"Flavio Esposito, I. Matta\",\"doi\":\"10.1145/2627566.2627569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network protocols have historically been developed on an ad-hoc basis, and cloud computing is no exception. A fundamental management protocol, not yet standardized, that cloud providers need to run to support wide-area virtual network services is the virtual network (VN) embedding protocol.\\n In this paper, we use decomposition theory to provide a unifying architecture for the VN embedding problem. We show how our architecture subsumes existing solutions, and how it can be used by cloud providers to design a distributed VN embedding protocol that adapts to different scenarios, by merely instantiating different decomposition policies. We analyze key representative tradeoffs via simulation, and with our VN embedding testbed that uses a Linux system architecture to reserve virtual node and link capacities. In contrast with existing VN embedding solutions, we found that partitioning a VN request not only increases the signaling overhead, but may decrease cloud providers' revenue.\",\"PeriodicalId\":91161,\"journal\":{\"name\":\"Proceedings. Data Compression Conference\",\"volume\":\"39 1\",\"pages\":\"53-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2627566.2627569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2627566.2627569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A decomposition-based architecture for distributed virtual network embedding
Network protocols have historically been developed on an ad-hoc basis, and cloud computing is no exception. A fundamental management protocol, not yet standardized, that cloud providers need to run to support wide-area virtual network services is the virtual network (VN) embedding protocol.
In this paper, we use decomposition theory to provide a unifying architecture for the VN embedding problem. We show how our architecture subsumes existing solutions, and how it can be used by cloud providers to design a distributed VN embedding protocol that adapts to different scenarios, by merely instantiating different decomposition policies. We analyze key representative tradeoffs via simulation, and with our VN embedding testbed that uses a Linux system architecture to reserve virtual node and link capacities. In contrast with existing VN embedding solutions, we found that partitioning a VN request not only increases the signaling overhead, but may decrease cloud providers' revenue.