同质机器人群任务分配算法

Devesh K. Jha
{"title":"同质机器人群任务分配算法","authors":"Devesh K. Jha","doi":"10.1109/IROS.2018.8594052","DOIUrl":null,"url":null,"abstract":"In this paper, we present algorithms for synthesizing controllers to distribute a swarm of homogeneous robots (agents) over heterogeneous tasks which are operated in parallel. Swarm is modeled as a homogeneous collection of irreducible Markov chains. States of the Markov chain represent the tasks performed by the swarm. The target state is a pre-defined distribution of agents over the states of the Markov chain (and thus the tasks). We make use of ergodicity property of irreducible Markov chains to ensure that as an individual agent converges to the desired behavior in time, the swarm converges to the target state. To circumvent the problems faced by a global controller and local/decentralized controllers alone, we design a controller by combining global supervision with local-feedback-based state level decisions. Some numerical experiments are shown to illustrate the performance of the proposed algorithms.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"3771-3776"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Algorithms for Task Allocation in Homogeneous Swarm of Robots\",\"authors\":\"Devesh K. Jha\",\"doi\":\"10.1109/IROS.2018.8594052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present algorithms for synthesizing controllers to distribute a swarm of homogeneous robots (agents) over heterogeneous tasks which are operated in parallel. Swarm is modeled as a homogeneous collection of irreducible Markov chains. States of the Markov chain represent the tasks performed by the swarm. The target state is a pre-defined distribution of agents over the states of the Markov chain (and thus the tasks). We make use of ergodicity property of irreducible Markov chains to ensure that as an individual agent converges to the desired behavior in time, the swarm converges to the target state. To circumvent the problems faced by a global controller and local/decentralized controllers alone, we design a controller by combining global supervision with local-feedback-based state level decisions. Some numerical experiments are shown to illustrate the performance of the proposed algorithms.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"1 1\",\"pages\":\"3771-3776\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8594052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们提出了一种算法来合成控制器来分配一群同构机器人(agent)在并行操作的异构任务上。将蜂群建模为不可约马尔可夫链的齐次集合。马尔可夫链的状态表示群体执行的任务。目标状态是马尔可夫链(以及任务)状态上的预定义代理分布。利用不可约马尔可夫链的遍历性,保证个体智能体及时收敛到期望行为时,群体智能体收敛到目标状态。为了避免全局控制器和局部/分散控制器单独面临的问题,我们通过将全局监督与基于本地反馈的状态级决策相结合来设计控制器。一些数值实验证明了所提算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for Task Allocation in Homogeneous Swarm of Robots
In this paper, we present algorithms for synthesizing controllers to distribute a swarm of homogeneous robots (agents) over heterogeneous tasks which are operated in parallel. Swarm is modeled as a homogeneous collection of irreducible Markov chains. States of the Markov chain represent the tasks performed by the swarm. The target state is a pre-defined distribution of agents over the states of the Markov chain (and thus the tasks). We make use of ergodicity property of irreducible Markov chains to ensure that as an individual agent converges to the desired behavior in time, the swarm converges to the target state. To circumvent the problems faced by a global controller and local/decentralized controllers alone, we design a controller by combining global supervision with local-feedback-based state level decisions. Some numerical experiments are shown to illustrate the performance of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-Chip Virtual Vortex Gear and Its Application Classification of Hanging Garments Using Learned Features Extracted from 3D Point Clouds Deep Sequential Models for Sampling-Based Planning An Adjustable Force Sensitive Sensor with an Electromagnet for a Soft, Distributed, Digital 3-axis Skin Sensor Sliding-Layer Laminates: A Robotic Material Enabling Robust and Adaptable Undulatory Locomotion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1