用陶石和甘蔗渣灰蒸压轻质混凝土的生产

IF 0.7 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of metals, materials and minerals Pub Date : 2023-06-27 DOI:10.55713/jmmm.v33i2.1601
S. Sriprasertsuk, S. Daosukho
{"title":"用陶石和甘蔗渣灰蒸压轻质混凝土的生产","authors":"S. Sriprasertsuk, S. Daosukho","doi":"10.55713/jmmm.v33i2.1601","DOIUrl":null,"url":null,"abstract":"This study investigated the influence of pottery stone and bagasse ash on the mechanical features of autoclaved lightweight concrete. Pottery stone is a natural resource of igneous rock weathering commonly exists with white clay, feldspar and limestone. This raw material is mainly composed of quartz and mica that has been used for the production of ceramic products. Bagasse ash is a waste product of the sugar refining process that causes serious environmental pollution. Pottery stone and bagasse ash waste were physically characterized and partially substituted by the weight of cement in lightweight concrete with the addition of aluminium powder at a certain amount. The use of aluminium powder showed a positive effect on the porosity of lightweight bodies. Compressive strength, density and thermal conductivity were determined. Pottery stone can be used as a natural pozzolan for the production of lightweight concrete. Lightweight concrete manufactured with 17.5% pottery stone and 17.5% bagasse ash showed low density and good compressive strength. Autoclaved lightweight concrete is considered an economy in the consumption of pottery stone and bagasse ash waste as cement replacement, therefore enhancing the possibility of its reuse in a sustainable way.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"24 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production of autoclaved lightweight concretes using pottery stone and bagasse ash\",\"authors\":\"S. Sriprasertsuk, S. Daosukho\",\"doi\":\"10.55713/jmmm.v33i2.1601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the influence of pottery stone and bagasse ash on the mechanical features of autoclaved lightweight concrete. Pottery stone is a natural resource of igneous rock weathering commonly exists with white clay, feldspar and limestone. This raw material is mainly composed of quartz and mica that has been used for the production of ceramic products. Bagasse ash is a waste product of the sugar refining process that causes serious environmental pollution. Pottery stone and bagasse ash waste were physically characterized and partially substituted by the weight of cement in lightweight concrete with the addition of aluminium powder at a certain amount. The use of aluminium powder showed a positive effect on the porosity of lightweight bodies. Compressive strength, density and thermal conductivity were determined. Pottery stone can be used as a natural pozzolan for the production of lightweight concrete. Lightweight concrete manufactured with 17.5% pottery stone and 17.5% bagasse ash showed low density and good compressive strength. Autoclaved lightweight concrete is considered an economy in the consumption of pottery stone and bagasse ash waste as cement replacement, therefore enhancing the possibility of its reuse in a sustainable way.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i2.1601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i2.1601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

研究了陶石料和甘蔗渣灰对蒸压轻量混凝土力学性能的影响。陶石是一种天然风化火成岩资源,与白粘土、长石和石灰岩共同存在。这种原料主要由石英和云母组成,已被用于陶瓷制品的生产。甘蔗渣是制糖过程中产生的废弃物,对环境造成严重污染。在轻质混凝土中加入一定量的铝粉,对陶石和甘蔗渣废料进行了物理表征,并部分取代了水泥的重量。铝粉的使用对轻质体的孔隙率有积极的影响。测定了抗压强度、密度和导热系数。陶石可作为天然火山灰用于生产轻质混凝土。以17.5%陶石和17.5%甘蔗渣灰配制的轻质混凝土密度低,抗压强度好。蒸压轻质混凝土被认为是陶瓷石和甘蔗渣灰烬废物作为水泥替代品的经济消耗,因此以可持续的方式增强其再利用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of autoclaved lightweight concretes using pottery stone and bagasse ash
This study investigated the influence of pottery stone and bagasse ash on the mechanical features of autoclaved lightweight concrete. Pottery stone is a natural resource of igneous rock weathering commonly exists with white clay, feldspar and limestone. This raw material is mainly composed of quartz and mica that has been used for the production of ceramic products. Bagasse ash is a waste product of the sugar refining process that causes serious environmental pollution. Pottery stone and bagasse ash waste were physically characterized and partially substituted by the weight of cement in lightweight concrete with the addition of aluminium powder at a certain amount. The use of aluminium powder showed a positive effect on the porosity of lightweight bodies. Compressive strength, density and thermal conductivity were determined. Pottery stone can be used as a natural pozzolan for the production of lightweight concrete. Lightweight concrete manufactured with 17.5% pottery stone and 17.5% bagasse ash showed low density and good compressive strength. Autoclaved lightweight concrete is considered an economy in the consumption of pottery stone and bagasse ash waste as cement replacement, therefore enhancing the possibility of its reuse in a sustainable way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of metals, materials and minerals
Journal of metals, materials and minerals MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.40
自引率
11.10%
发文量
0
期刊介绍: Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.
期刊最新文献
Photocatalytic degradation of ciprofloxacin drug utilizing novel PVDF/polyaniline/ lanthanum strontium manganate@Ag composites Dispersion mechanism of nanoparticles and its role on mechanical, thermal and electrical properties of epoxy nanocomposites - A Review Sustainable innovation in ballistic vest design: Exploration of polyurethane-coated hemp fabrics and reinforced sandwich epoxy composites against 9 mm and .40 S&W bullets Electrical and water resistance properties of conductive paste based on gold/silver composites Review of materials, functional components, fabrication technologies and assembling characteristics for polymer electrolyte membrane fuel cells (PEMFCs) – An update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1