{"title":"纳米医学在抗癌治疗中的应用","authors":"Y. Krasnopolsky, D. Pylypenko, G. Grigoryeva","doi":"10.20998/2079-0821.2022.01","DOIUrl":null,"url":null,"abstract":"The use of liposomal nanoparticles as a drug delivery system today is a promising area of modern nanopharmacology, in particular in the development of antitumor drugs. Liposomal forms of antitumor active pharmaceutical ingredients are characterized by reduced toxicity, stability, and increased antitumor activity of nanoparticle-encapsulated antitumor agent, prolonged action of the drug. Commercially available liposomal anticancer drugs are passively targeted drugs that accumulate in cells by passive diffusion in tumor cells due to the EPR effect of the vascular system. This review presents data from the study of antitumor activity of liposomal drugs conducted by Ukrainian scientists in recent decades. Today, the antitumor activity of liposomal forms of therapeutic agents of various natures has been proven, among them are anthracycline antibiotics, platinum drugs, semisynthetic alkaloid derivatives, natural polyphenolic antioxidants, etc. Thus, the encapsulation of doxorubicin hydrochloride in liposomes has reduced its cardiotoxicity and other side effects, provided an opportunity to treat doxorubicin-resistant tumors. Liposomal forms of complex platinum compounds, in particular cisplatin, have been shown to be more effective than free forms of cytostatics in the treatment of cisplatin-resistant ovarian cancer. The use of polyphenolic antioxidants, quercetin and curcumin, in complex therapy can not only enhance the antitumor effect, but also have a protective effect on healthy tissues and organs.","PeriodicalId":9407,"journal":{"name":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NANOMEDICINE IN ANTICANCER THERAPY\",\"authors\":\"Y. Krasnopolsky, D. Pylypenko, G. Grigoryeva\",\"doi\":\"10.20998/2079-0821.2022.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of liposomal nanoparticles as a drug delivery system today is a promising area of modern nanopharmacology, in particular in the development of antitumor drugs. Liposomal forms of antitumor active pharmaceutical ingredients are characterized by reduced toxicity, stability, and increased antitumor activity of nanoparticle-encapsulated antitumor agent, prolonged action of the drug. Commercially available liposomal anticancer drugs are passively targeted drugs that accumulate in cells by passive diffusion in tumor cells due to the EPR effect of the vascular system. This review presents data from the study of antitumor activity of liposomal drugs conducted by Ukrainian scientists in recent decades. Today, the antitumor activity of liposomal forms of therapeutic agents of various natures has been proven, among them are anthracycline antibiotics, platinum drugs, semisynthetic alkaloid derivatives, natural polyphenolic antioxidants, etc. Thus, the encapsulation of doxorubicin hydrochloride in liposomes has reduced its cardiotoxicity and other side effects, provided an opportunity to treat doxorubicin-resistant tumors. Liposomal forms of complex platinum compounds, in particular cisplatin, have been shown to be more effective than free forms of cytostatics in the treatment of cisplatin-resistant ovarian cancer. The use of polyphenolic antioxidants, quercetin and curcumin, in complex therapy can not only enhance the antitumor effect, but also have a protective effect on healthy tissues and organs.\",\"PeriodicalId\":9407,\"journal\":{\"name\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the National Technical University \\\"KhPI\\\". Series: Chemistry, Chemical Technology and Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2079-0821.2022.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the National Technical University \"KhPI\". Series: Chemistry, Chemical Technology and Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2079-0821.2022.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of liposomal nanoparticles as a drug delivery system today is a promising area of modern nanopharmacology, in particular in the development of antitumor drugs. Liposomal forms of antitumor active pharmaceutical ingredients are characterized by reduced toxicity, stability, and increased antitumor activity of nanoparticle-encapsulated antitumor agent, prolonged action of the drug. Commercially available liposomal anticancer drugs are passively targeted drugs that accumulate in cells by passive diffusion in tumor cells due to the EPR effect of the vascular system. This review presents data from the study of antitumor activity of liposomal drugs conducted by Ukrainian scientists in recent decades. Today, the antitumor activity of liposomal forms of therapeutic agents of various natures has been proven, among them are anthracycline antibiotics, platinum drugs, semisynthetic alkaloid derivatives, natural polyphenolic antioxidants, etc. Thus, the encapsulation of doxorubicin hydrochloride in liposomes has reduced its cardiotoxicity and other side effects, provided an opportunity to treat doxorubicin-resistant tumors. Liposomal forms of complex platinum compounds, in particular cisplatin, have been shown to be more effective than free forms of cytostatics in the treatment of cisplatin-resistant ovarian cancer. The use of polyphenolic antioxidants, quercetin and curcumin, in complex therapy can not only enhance the antitumor effect, but also have a protective effect on healthy tissues and organs.