力学信息中子噪声监测对反应堆容器内部进行远程状态评估

G. Banyay, Matthew J. Palamara, Jessica Preston, Stephen D. Smith
{"title":"力学信息中子噪声监测对反应堆容器内部进行远程状态评估","authors":"G. Banyay, Matthew J. Palamara, Jessica Preston, Stephen D. Smith","doi":"10.1115/1.4054444","DOIUrl":null,"url":null,"abstract":"\n Use of neutron noise analysis in pressurized water reactors to detect and diagnose degradation represents the practice of proactive structural health monitoring for reactor vessel internals. Recent enhancements to this remote condition monitoring and diagnostic computational framework quantify the sensitivity of the structural dynamics to different degradation scenarios. This methodology leverages benchmarked computational structural mechanics models and machine learning methods to enhance interpretability of neutron noise measurement results. The novelty of the methodology lies not in the particular technologies and algorithms but in our amalgamation into a holistic computational framework for structural health monitoring. Recent experience revealed successful deployment of this methodology to proactively diagnose different degradation scenarios, thus enabling prognostic asset management for reactor structures.","PeriodicalId":44694,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","volume":"2 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics Informed Neutron Noise Monitoring to Perform Remote Condition Assessment for Reactor Vessel Internals\",\"authors\":\"G. Banyay, Matthew J. Palamara, Jessica Preston, Stephen D. Smith\",\"doi\":\"10.1115/1.4054444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Use of neutron noise analysis in pressurized water reactors to detect and diagnose degradation represents the practice of proactive structural health monitoring for reactor vessel internals. Recent enhancements to this remote condition monitoring and diagnostic computational framework quantify the sensitivity of the structural dynamics to different degradation scenarios. This methodology leverages benchmarked computational structural mechanics models and machine learning methods to enhance interpretability of neutron noise measurement results. The novelty of the methodology lies not in the particular technologies and algorithms but in our amalgamation into a holistic computational framework for structural health monitoring. Recent experience revealed successful deployment of this methodology to proactively diagnose different degradation scenarios, thus enabling prognostic asset management for reactor structures.\",\"PeriodicalId\":44694,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B-Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4054444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在压水堆中使用中子噪声分析来检测和诊断退化,代表了对反应堆容器内部结构进行主动健康监测的实践。最近对这种远程状态监测和诊断计算框架的改进量化了结构动力学对不同退化情景的敏感性。该方法利用基准计算结构力学模型和机器学习方法来提高中子噪声测量结果的可解释性。该方法的新颖之处不在于特定的技术和算法,而在于我们将其融合为一个整体的结构健康监测计算框架。最近的经验表明,该方法的成功部署可以主动诊断不同的退化情况,从而实现反应堆结构的预测资产管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanics Informed Neutron Noise Monitoring to Perform Remote Condition Assessment for Reactor Vessel Internals
Use of neutron noise analysis in pressurized water reactors to detect and diagnose degradation represents the practice of proactive structural health monitoring for reactor vessel internals. Recent enhancements to this remote condition monitoring and diagnostic computational framework quantify the sensitivity of the structural dynamics to different degradation scenarios. This methodology leverages benchmarked computational structural mechanics models and machine learning methods to enhance interpretability of neutron noise measurement results. The novelty of the methodology lies not in the particular technologies and algorithms but in our amalgamation into a holistic computational framework for structural health monitoring. Recent experience revealed successful deployment of this methodology to proactively diagnose different degradation scenarios, thus enabling prognostic asset management for reactor structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
13.60%
发文量
34
期刊最新文献
Verification and Validation of Rotating Machinery Using Digital Twin Risk Approach Based On the Fram Model for Vessel Traffic Management A Fault Detection Framework Based On Data-driven Digital Shadows Domain Adaptation Of Population-Based Of Bolted Joint Structures For Loss Detection Of Tightening Torque Human-Comfort Evaluation for A Patient-Transfer Robot through A Human-Robot Mechanical Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1