利用CFD分析优化HVAC空气分配以改善空气质量

Hussein Kokash, M. Burzo, G. Agbaglah, Fardeen Mazumder
{"title":"利用CFD分析优化HVAC空气分配以改善空气质量","authors":"Hussein Kokash, M. Burzo, G. Agbaglah, Fardeen Mazumder","doi":"10.1115/imece2022-95730","DOIUrl":null,"url":null,"abstract":"\n The energy consumption of Heating Ventilation and Air Conditioning (HVAC) systems accounts for a large proportion of global energy usage so even a small percentage of energy savings in these systems will account for important absolute value savings. One such saving can be realized by better designs as well as optimizing existing air distribution system. The indoor air quality (IAQ) is also greatly impacted by the air distribution system. In this work, the task of optimizing both the placement and the design of diffusers is investigated so acceptable Air Changes per Hour (ACH) numbers are attained with less energy consumption and good thermal comfort. The ANSYS Fluent software was used to optimize the design and placement of a newly developed diffuser. The proposed air distribution system is design to produce conditions like what one would experience while standing outside in a small breeze while experiencing perfect weather (room temperature, uniform air temperature distribution, air speed less than 2 m/s) [1]). This work is an extension of a previous study where a new diffuser design was proposed, which takes advantage of the Coanda effect [2]. The numerical analysis includes realistic models of a 9 × 9 × 3 m (width × length × height) classroom, which is occupied by students and a teacher. To be more realistic, it includes furniture, a door and windows. The simulated Heating Ventilation and Air Conditioning (HVAC) system complies with ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standards for acceptable air quality. This investigation proposes a template on how anyone can optimize the location and placement of the air diffusers while achieving both thermal comfort and good IAQ. While this work was inspired by the COVID-19 pandemic this is foreseen to be an important ongoing issue and could lead to future advances in HAVC system that improve IAQ and produce better thermal comfort with improved energy savings.","PeriodicalId":23629,"journal":{"name":"Volume 6: Energy","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized HVAC Air Distribution for Improved Air Quality Using CFD Analysis\",\"authors\":\"Hussein Kokash, M. Burzo, G. Agbaglah, Fardeen Mazumder\",\"doi\":\"10.1115/imece2022-95730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The energy consumption of Heating Ventilation and Air Conditioning (HVAC) systems accounts for a large proportion of global energy usage so even a small percentage of energy savings in these systems will account for important absolute value savings. One such saving can be realized by better designs as well as optimizing existing air distribution system. The indoor air quality (IAQ) is also greatly impacted by the air distribution system. In this work, the task of optimizing both the placement and the design of diffusers is investigated so acceptable Air Changes per Hour (ACH) numbers are attained with less energy consumption and good thermal comfort. The ANSYS Fluent software was used to optimize the design and placement of a newly developed diffuser. The proposed air distribution system is design to produce conditions like what one would experience while standing outside in a small breeze while experiencing perfect weather (room temperature, uniform air temperature distribution, air speed less than 2 m/s) [1]). This work is an extension of a previous study where a new diffuser design was proposed, which takes advantage of the Coanda effect [2]. The numerical analysis includes realistic models of a 9 × 9 × 3 m (width × length × height) classroom, which is occupied by students and a teacher. To be more realistic, it includes furniture, a door and windows. The simulated Heating Ventilation and Air Conditioning (HVAC) system complies with ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standards for acceptable air quality. This investigation proposes a template on how anyone can optimize the location and placement of the air diffusers while achieving both thermal comfort and good IAQ. While this work was inspired by the COVID-19 pandemic this is foreseen to be an important ongoing issue and could lead to future advances in HAVC system that improve IAQ and produce better thermal comfort with improved energy savings.\",\"PeriodicalId\":23629,\"journal\":{\"name\":\"Volume 6: Energy\",\"volume\":\"178 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

暖通空调(HVAC)系统的能源消耗占全球能源消耗的很大比例,因此即使这些系统中的一小部分节能也将占重要的绝对值节约。这样的节约可以通过更好的设计以及优化现有的空气分配系统来实现。空气组织系统对室内空气质量也有很大的影响。在这项工作中,研究了优化扩散器的布置和设计的任务,以便在更少的能耗和良好的热舒适的情况下获得可接受的每小时换气量(ACH)数字。利用ANSYS Fluent软件对新研制的扩散器进行了优化设计和布置。所提出的气流组织系统的设计是为了产生人们在经历完美天气(室温,均匀的空气温度分布,风速小于2米/秒)时站在外面时所经历的条件[1]。这项工作是对先前一项研究的延伸,该研究提出了一种新的扩散器设计,该设计利用了Coanda效应[2]。数值分析包括一个9 × 9 × 3 m(宽×长×高)教室的现实模型,其中有学生和一名教师。更现实一点,它包括家具、一扇门和一扇窗户。模拟的暖通空调(HVAC)系统符合ASHRAE(美国采暖、制冷和空调工程师协会)可接受的空气质量标准。这项调查提出了一个模板,任何人都可以优化空气扩散器的位置和位置,同时实现热舒适和良好的室内空气质量。虽然这项工作受到COVID-19大流行的启发,但预计这将是一个重要的持续问题,并可能导致HAVC系统的未来进步,从而改善室内空气质量,并通过提高节能来产生更好的热舒适性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized HVAC Air Distribution for Improved Air Quality Using CFD Analysis
The energy consumption of Heating Ventilation and Air Conditioning (HVAC) systems accounts for a large proportion of global energy usage so even a small percentage of energy savings in these systems will account for important absolute value savings. One such saving can be realized by better designs as well as optimizing existing air distribution system. The indoor air quality (IAQ) is also greatly impacted by the air distribution system. In this work, the task of optimizing both the placement and the design of diffusers is investigated so acceptable Air Changes per Hour (ACH) numbers are attained with less energy consumption and good thermal comfort. The ANSYS Fluent software was used to optimize the design and placement of a newly developed diffuser. The proposed air distribution system is design to produce conditions like what one would experience while standing outside in a small breeze while experiencing perfect weather (room temperature, uniform air temperature distribution, air speed less than 2 m/s) [1]). This work is an extension of a previous study where a new diffuser design was proposed, which takes advantage of the Coanda effect [2]. The numerical analysis includes realistic models of a 9 × 9 × 3 m (width × length × height) classroom, which is occupied by students and a teacher. To be more realistic, it includes furniture, a door and windows. The simulated Heating Ventilation and Air Conditioning (HVAC) system complies with ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standards for acceptable air quality. This investigation proposes a template on how anyone can optimize the location and placement of the air diffusers while achieving both thermal comfort and good IAQ. While this work was inspired by the COVID-19 pandemic this is foreseen to be an important ongoing issue and could lead to future advances in HAVC system that improve IAQ and produce better thermal comfort with improved energy savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ammonia for Industrial Combustion A Method to Account for the Effects of Thermal Osmosis in PEM Fuel Cells Optimization of Supercritical CO2 Cycle Combined With ORC for Waste Heat Recovery Improving the Yield of Biodiesel Production Using Waste Vegetable Oil Considering the Free Fatty Acid Content Flame Propagation Analysis of Anhydrous and Hydrous Ethanol in an Optical Spark Ignition Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1