{"title":"裂纹长度对带孔板应力的影响","authors":"Thaker Saleh Dawood, Younis K. Khdir","doi":"10.29194/njes.25010028","DOIUrl":null,"url":null,"abstract":"The field of mechanics concerned with studying the propagation of cracks in materials is Fracture Mechanics. Technology systems are meant to withstand the loads to which they are likely to be exposed when in use. Material imperfections arising at the time of production or use of the material are, however, unavoidable and must therefore be taken into account. A stress intensity factor is a fracture parameter that defines the part failure. This paper study’s the effect of cracks on the stresses of rectangular plates having a hole in the center. The plate was subjected to tensile pressure at the top side while maintaining the bottom side fixed. The plate had four cracks distributed around the centered hole at 45o at each side. The effect of the length of the cracks on the resulted stresses and strains was investigated. Also, the effect of the position of the crack on the resulted stresses and strains was studied. Finite element models for the different plate cases were built using ANSYS software. The results showed that increasing the crack length resulted to increase the stresses and strains. The dimension of the plate width, height and thickness were 150 mm, 300 mm and 1 mm respectively, and the crack position was investigated for different crack lengths (5, 10, 15, 20, 25 mm) however the results were not steady as it looks that the crack lengths have changed the stress distribution over the plate.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Crack Length on Stresses in a Plate with a Hole\",\"authors\":\"Thaker Saleh Dawood, Younis K. Khdir\",\"doi\":\"10.29194/njes.25010028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of mechanics concerned with studying the propagation of cracks in materials is Fracture Mechanics. Technology systems are meant to withstand the loads to which they are likely to be exposed when in use. Material imperfections arising at the time of production or use of the material are, however, unavoidable and must therefore be taken into account. A stress intensity factor is a fracture parameter that defines the part failure. This paper study’s the effect of cracks on the stresses of rectangular plates having a hole in the center. The plate was subjected to tensile pressure at the top side while maintaining the bottom side fixed. The plate had four cracks distributed around the centered hole at 45o at each side. The effect of the length of the cracks on the resulted stresses and strains was investigated. Also, the effect of the position of the crack on the resulted stresses and strains was studied. Finite element models for the different plate cases were built using ANSYS software. The results showed that increasing the crack length resulted to increase the stresses and strains. The dimension of the plate width, height and thickness were 150 mm, 300 mm and 1 mm respectively, and the crack position was investigated for different crack lengths (5, 10, 15, 20, 25 mm) however the results were not steady as it looks that the crack lengths have changed the stress distribution over the plate.\",\"PeriodicalId\":7470,\"journal\":{\"name\":\"Al-Nahrain Journal for Engineering Sciences\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29194/njes.25010028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.25010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Crack Length on Stresses in a Plate with a Hole
The field of mechanics concerned with studying the propagation of cracks in materials is Fracture Mechanics. Technology systems are meant to withstand the loads to which they are likely to be exposed when in use. Material imperfections arising at the time of production or use of the material are, however, unavoidable and must therefore be taken into account. A stress intensity factor is a fracture parameter that defines the part failure. This paper study’s the effect of cracks on the stresses of rectangular plates having a hole in the center. The plate was subjected to tensile pressure at the top side while maintaining the bottom side fixed. The plate had four cracks distributed around the centered hole at 45o at each side. The effect of the length of the cracks on the resulted stresses and strains was investigated. Also, the effect of the position of the crack on the resulted stresses and strains was studied. Finite element models for the different plate cases were built using ANSYS software. The results showed that increasing the crack length resulted to increase the stresses and strains. The dimension of the plate width, height and thickness were 150 mm, 300 mm and 1 mm respectively, and the crack position was investigated for different crack lengths (5, 10, 15, 20, 25 mm) however the results were not steady as it looks that the crack lengths have changed the stress distribution over the plate.