Berihu Mebrahtom, S. Matharage, Qiang Liu, C. Krause, A. Gyore, L. van der Zel
{"title":"了解IEC TS 62332-1双温老化电池的温度分布","authors":"Berihu Mebrahtom, S. Matharage, Qiang Liu, C. Krause, A. Gyore, L. van der Zel","doi":"10.1109/CEIDP50766.2021.9705332","DOIUrl":null,"url":null,"abstract":"This paper discusses the challenges faced during the development of a dual-temperature test cell based on IEC technical specification TS 62332-1 to evaluate the ageing performance of transformer insulation systems. A dual-temperature test cell was built based on IEC TS 62332-1 and the performance of the test cell was investigated accordingly. Apart from measuring the conductor and the top liquid temperatures, additional temperature measurements were conducted in other locations including hot solid insulation, cold solid insulation, liquid immersion heaters and test cell surface. Temperature distribution inside the dual-temperature test cell is then analyzed. The results indicate the importance of location of top liquid temperature thermocouples and its effect on the overall temperature distribution. Some additional aspects for maintaining consistency between different test cells are also discussed.","PeriodicalId":6837,"journal":{"name":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"17 1","pages":"93-96"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Temperature Profile of the IEC TS 62332-1 Dual-temperature Ageing Cell\",\"authors\":\"Berihu Mebrahtom, S. Matharage, Qiang Liu, C. Krause, A. Gyore, L. van der Zel\",\"doi\":\"10.1109/CEIDP50766.2021.9705332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the challenges faced during the development of a dual-temperature test cell based on IEC technical specification TS 62332-1 to evaluate the ageing performance of transformer insulation systems. A dual-temperature test cell was built based on IEC TS 62332-1 and the performance of the test cell was investigated accordingly. Apart from measuring the conductor and the top liquid temperatures, additional temperature measurements were conducted in other locations including hot solid insulation, cold solid insulation, liquid immersion heaters and test cell surface. Temperature distribution inside the dual-temperature test cell is then analyzed. The results indicate the importance of location of top liquid temperature thermocouples and its effect on the overall temperature distribution. Some additional aspects for maintaining consistency between different test cells are also discussed.\",\"PeriodicalId\":6837,\"journal\":{\"name\":\"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"volume\":\"17 1\",\"pages\":\"93-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP50766.2021.9705332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP50766.2021.9705332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding the Temperature Profile of the IEC TS 62332-1 Dual-temperature Ageing Cell
This paper discusses the challenges faced during the development of a dual-temperature test cell based on IEC technical specification TS 62332-1 to evaluate the ageing performance of transformer insulation systems. A dual-temperature test cell was built based on IEC TS 62332-1 and the performance of the test cell was investigated accordingly. Apart from measuring the conductor and the top liquid temperatures, additional temperature measurements were conducted in other locations including hot solid insulation, cold solid insulation, liquid immersion heaters and test cell surface. Temperature distribution inside the dual-temperature test cell is then analyzed. The results indicate the importance of location of top liquid temperature thermocouples and its effect on the overall temperature distribution. Some additional aspects for maintaining consistency between different test cells are also discussed.