{"title":"铁酸锌/银/氯化银纳米复合材料的热扩散性能和光催化降解染料性能","authors":"Minu Pius, Frincy Francis, S. Joseph","doi":"10.4028/p-383q35","DOIUrl":null,"url":null,"abstract":"Herein, we report for the first time the thermal diffusivity of zinc ferrite/ silver/ silver chloride nanocomposite with a four-fold enhancement in comparison with the base fluid. A systematic analysis of the dependence of calcination temperature and synthesis routes on the crystallinity of nanocomposites of zinc ferrite with silver and silver chloride suiting it for diverse applications was done. Synthesized via the co-precipitation method, the samples were characterized using X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive X-ray, Vibration sample magnetometer, ultraviolet-visible Diffusive Reflective spectroscopy and Photoluminescence studies. A zeta potential of -31.1mV was obtained for the sample showing good colloidal stability. The thermal diffusivity of the samples as nanofluids was analyzed using the dual beam thermal lens method. The study also envisages the magnetically retrievable and visible light-active nature of the synthesized samples indicating their suitability for photocatalytic degradation of toxic dyes. The work on photocatalytic degradation of methylene blue stands out in attaining rapid, efficient dye degradation of 98% within 90 minutes of sunlight exposure in comparison with unblended zinc ferrite nanoparticles even without any oxidizing agent.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"32 1","pages":"59 - 72"},"PeriodicalIF":0.8000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Enhanced Thermal Diffusivity and Photocatalytic Dye Degradation Capability of Zinc Ferrite/Silver/Silver Chloride Nanocomposites\",\"authors\":\"Minu Pius, Frincy Francis, S. Joseph\",\"doi\":\"10.4028/p-383q35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, we report for the first time the thermal diffusivity of zinc ferrite/ silver/ silver chloride nanocomposite with a four-fold enhancement in comparison with the base fluid. A systematic analysis of the dependence of calcination temperature and synthesis routes on the crystallinity of nanocomposites of zinc ferrite with silver and silver chloride suiting it for diverse applications was done. Synthesized via the co-precipitation method, the samples were characterized using X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive X-ray, Vibration sample magnetometer, ultraviolet-visible Diffusive Reflective spectroscopy and Photoluminescence studies. A zeta potential of -31.1mV was obtained for the sample showing good colloidal stability. The thermal diffusivity of the samples as nanofluids was analyzed using the dual beam thermal lens method. The study also envisages the magnetically retrievable and visible light-active nature of the synthesized samples indicating their suitability for photocatalytic degradation of toxic dyes. The work on photocatalytic degradation of methylene blue stands out in attaining rapid, efficient dye degradation of 98% within 90 minutes of sunlight exposure in comparison with unblended zinc ferrite nanoparticles even without any oxidizing agent.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"32 1\",\"pages\":\"59 - 72\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-383q35\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-383q35","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhanced Thermal Diffusivity and Photocatalytic Dye Degradation Capability of Zinc Ferrite/Silver/Silver Chloride Nanocomposites
Herein, we report for the first time the thermal diffusivity of zinc ferrite/ silver/ silver chloride nanocomposite with a four-fold enhancement in comparison with the base fluid. A systematic analysis of the dependence of calcination temperature and synthesis routes on the crystallinity of nanocomposites of zinc ferrite with silver and silver chloride suiting it for diverse applications was done. Synthesized via the co-precipitation method, the samples were characterized using X-ray diffraction, Field emission scanning electron microscopy, Energy dispersive X-ray, Vibration sample magnetometer, ultraviolet-visible Diffusive Reflective spectroscopy and Photoluminescence studies. A zeta potential of -31.1mV was obtained for the sample showing good colloidal stability. The thermal diffusivity of the samples as nanofluids was analyzed using the dual beam thermal lens method. The study also envisages the magnetically retrievable and visible light-active nature of the synthesized samples indicating their suitability for photocatalytic degradation of toxic dyes. The work on photocatalytic degradation of methylene blue stands out in attaining rapid, efficient dye degradation of 98% within 90 minutes of sunlight exposure in comparison with unblended zinc ferrite nanoparticles even without any oxidizing agent.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.