Hadoop集群的模型驱动自动缩放

Anshul Gandhi, Parijat Dube, Andrzej Kochut, Li Zhang
{"title":"Hadoop集群的模型驱动自动缩放","authors":"Anshul Gandhi, Parijat Dube, Andrzej Kochut, Li Zhang","doi":"10.1109/ICAC.2015.50","DOIUrl":null,"url":null,"abstract":"In this paper, we present the design and implementation of a model-driven auto scaling solution for Hadoop clusters. We first develop novel performance models for Hadoop workloads that relate job completion times to various workload and system parameters such as input size and resource allocation. We then employ statistical techniques to tune the models for specific workloads, including Terasort and K-means. Finally, we employ the tuned models to determine the resources required to successfully complete the Hadoop jobs as per the user-specified response time SLA. We implement our solution on an Open Stack-based cloud cluster running Hadoop. Our experimental results across different workloads demonstrate the auto scaling capabilities of our solution, and enable significant resource savings without compromising performance.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"28 1","pages":"155-156"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model-Driven Autoscaling for Hadoop Clusters\",\"authors\":\"Anshul Gandhi, Parijat Dube, Andrzej Kochut, Li Zhang\",\"doi\":\"10.1109/ICAC.2015.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present the design and implementation of a model-driven auto scaling solution for Hadoop clusters. We first develop novel performance models for Hadoop workloads that relate job completion times to various workload and system parameters such as input size and resource allocation. We then employ statistical techniques to tune the models for specific workloads, including Terasort and K-means. Finally, we employ the tuned models to determine the resources required to successfully complete the Hadoop jobs as per the user-specified response time SLA. We implement our solution on an Open Stack-based cloud cluster running Hadoop. Our experimental results across different workloads demonstrate the auto scaling capabilities of our solution, and enable significant resource savings without compromising performance.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"28 1\",\"pages\":\"155-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一个模型驱动的Hadoop集群自动扩展解决方案的设计和实现。我们首先为Hadoop工作负载开发了新的性能模型,将任务完成时间与各种工作负载和系统参数(如输入大小和资源分配)联系起来。然后,我们使用统计技术来调整特定工作负载的模型,包括Terasort和K-means。最后,根据用户指定的响应时间SLA,我们使用调优模型来确定成功完成Hadoop作业所需的资源。我们在一个运行Hadoop的基于Open stack的云集群上实现我们的解决方案。我们在不同工作负载上的实验结果证明了我们解决方案的自动扩展能力,并在不影响性能的情况下节省了大量资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Driven Autoscaling for Hadoop Clusters
In this paper, we present the design and implementation of a model-driven auto scaling solution for Hadoop clusters. We first develop novel performance models for Hadoop workloads that relate job completion times to various workload and system parameters such as input size and resource allocation. We then employ statistical techniques to tune the models for specific workloads, including Terasort and K-means. Finally, we employ the tuned models to determine the resources required to successfully complete the Hadoop jobs as per the user-specified response time SLA. We implement our solution on an Open Stack-based cloud cluster running Hadoop. Our experimental results across different workloads demonstrate the auto scaling capabilities of our solution, and enable significant resource savings without compromising performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Control-Based Approach to Autonomic Performance Management in Computing Systems Trace Analysis for Fault Detection in Application Servers A Programming System for Autonomic Self-Managing Applications A Taxonomy for Self-∗ Properties in Decentralized Autonomic Computing Transparent Autonomization in Composite Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1