社交距离干预措施对COVID-19大流行影响的计算模拟

IF 1 Q4 ENGINEERING, BIOMEDICAL AIMS Bioengineering Pub Date : 2022-01-01 DOI:10.3934/bioeng.2022016
S. Khoshnaw, A. S. Mohammed
{"title":"社交距离干预措施对COVID-19大流行影响的计算模拟","authors":"S. Khoshnaw, A. S. Mohammed","doi":"10.3934/bioeng.2022016","DOIUrl":null,"url":null,"abstract":"The spread of the COVID-19 pandemic has been considered as a global issue. Based on the reported cases and clinical data, there are still required international efforts and more preventative measures to control the pandemic more effectively. Physical contact between individuals plays an essential role in spreading the coronavirus more widely. Mathematical models with computational simulations are effective tools to study and discuss this virus and minimize its impact on society. These tools help to determine more relevant factors that influence the spread of the virus. In this work, we developed two computational tools by using the R package and Python to simulate the COVID-19 transmissions. Additionally, some computational simulations were investigated that provide critical questions about global control strategies and further interventions. Accordingly, there are some computational model results and control strategies. First, we identify the model critical factors that helps us to understand the key transmission elements. Model transmissions can significantly be changed for primary tracing with delay to isolation. Second, some types of interventions, including case isolation, no intervention, quarantine contacts and quarantine contacts together with contacts of contacts are analyzed and discussed. The results show that quarantining contacts is the best way of intervening to minimize the spread of the virus. Finally, the basic reproduction number R0 is another important factor which provides a great role in understanding the transmission of the pandemic. Interestingly, the current computational simulations help us to pay more attention to critical model transmissions and minimize their impact on spreading this disease. They also help for further interventions and control strategies.","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"38 1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational simulations of the effects of social distancing interventions on the COVID-19 pandemic\",\"authors\":\"S. Khoshnaw, A. S. Mohammed\",\"doi\":\"10.3934/bioeng.2022016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spread of the COVID-19 pandemic has been considered as a global issue. Based on the reported cases and clinical data, there are still required international efforts and more preventative measures to control the pandemic more effectively. Physical contact between individuals plays an essential role in spreading the coronavirus more widely. Mathematical models with computational simulations are effective tools to study and discuss this virus and minimize its impact on society. These tools help to determine more relevant factors that influence the spread of the virus. In this work, we developed two computational tools by using the R package and Python to simulate the COVID-19 transmissions. Additionally, some computational simulations were investigated that provide critical questions about global control strategies and further interventions. Accordingly, there are some computational model results and control strategies. First, we identify the model critical factors that helps us to understand the key transmission elements. Model transmissions can significantly be changed for primary tracing with delay to isolation. Second, some types of interventions, including case isolation, no intervention, quarantine contacts and quarantine contacts together with contacts of contacts are analyzed and discussed. The results show that quarantining contacts is the best way of intervening to minimize the spread of the virus. Finally, the basic reproduction number R0 is another important factor which provides a great role in understanding the transmission of the pandemic. Interestingly, the current computational simulations help us to pay more attention to critical model transmissions and minimize their impact on spreading this disease. They also help for further interventions and control strategies.\",\"PeriodicalId\":45029,\"journal\":{\"name\":\"AIMS Bioengineering\",\"volume\":\"38 1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/bioeng.2022016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2022016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2

摘要

新型冠状病毒感染症(COVID-19)的扩散一直被视为全球性问题。根据报告的病例和临床数据,仍然需要国际努力和更多的预防措施,以更有效地控制这一流行病。人与人之间的身体接触在冠状病毒更广泛地传播中起着至关重要的作用。具有计算模拟的数学模型是研究和讨论该病毒并尽量减少其对社会影响的有效工具。这些工具有助于确定影响病毒传播的更相关的因素。在这项工作中,我们使用R包和Python开发了两个计算工具来模拟COVID-19的传播。此外,还研究了一些计算模拟,为全局控制策略和进一步干预提供了关键问题。相应的,给出了一些计算模型结果和控制策略。首先,我们确定模型的关键因素,帮助我们理解关键的传播因素。模型传输可以显著地改变为主跟踪,延迟到隔离。其次,对病例隔离、不干预、隔离接触者和隔离接触者与接触者的接触者进行了分析和讨论。结果表明,隔离接触者是减少病毒传播的最佳干预方式。最后,基本繁殖数R0是另一个重要因素,它在了解大流行的传播方面发挥了很大作用。有趣的是,目前的计算模拟帮助我们更多地关注关键模型传输,并尽量减少它们对这种疾病传播的影响。它们还有助于进一步的干预和控制战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational simulations of the effects of social distancing interventions on the COVID-19 pandemic
The spread of the COVID-19 pandemic has been considered as a global issue. Based on the reported cases and clinical data, there are still required international efforts and more preventative measures to control the pandemic more effectively. Physical contact between individuals plays an essential role in spreading the coronavirus more widely. Mathematical models with computational simulations are effective tools to study and discuss this virus and minimize its impact on society. These tools help to determine more relevant factors that influence the spread of the virus. In this work, we developed two computational tools by using the R package and Python to simulate the COVID-19 transmissions. Additionally, some computational simulations were investigated that provide critical questions about global control strategies and further interventions. Accordingly, there are some computational model results and control strategies. First, we identify the model critical factors that helps us to understand the key transmission elements. Model transmissions can significantly be changed for primary tracing with delay to isolation. Second, some types of interventions, including case isolation, no intervention, quarantine contacts and quarantine contacts together with contacts of contacts are analyzed and discussed. The results show that quarantining contacts is the best way of intervening to minimize the spread of the virus. Finally, the basic reproduction number R0 is another important factor which provides a great role in understanding the transmission of the pandemic. Interestingly, the current computational simulations help us to pay more attention to critical model transmissions and minimize their impact on spreading this disease. They also help for further interventions and control strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Bioengineering
AIMS Bioengineering ENGINEERING, BIOMEDICAL-
自引率
0.00%
发文量
17
审稿时长
4 weeks
期刊最新文献
Real data-based optimal control strategies for assessing the impact of the Omicron variant on heart attacks Decision support systems in healthcare: systematic review, meta-analysis and prediction, with example of COVID-19 Detection and analysis of coagulation effect in vein using MEMS laminar flow for the early heart stroke diagnosis An insight into the biomaterials used in craniofacial tissue engineering inclusive of regenerative dentistry Identification of diagnostic biomarkers of gestational diabetes mellitus based on transcriptome gene expression and alternations of microRNAs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1