具有空间变化参数的协方差函数的局部似然估计:R的convoSPAT包

M. Risser, Catherine A. Calder
{"title":"具有空间变化参数的协方差函数的局部似然估计:R的convoSPAT包","authors":"M. Risser, Catherine A. Calder","doi":"10.18637/JSS.V081.I14","DOIUrl":null,"url":null,"abstract":"In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology in nonstationary modeling with other existing methods, and as a result most new models are simply compared to stationary models. Using a convolution-based approach, we present a new nonstationary covariance function for spatial Gaussian process models that allows for efficient computing in two ways: first, by representing the spatially-varying parameters via a discrete mixture or \"mixture component\" model, and second, by estimating the mixture component parameters through a local likelihood approach. In order to make computation for a convolution-based nonstationary spatial model readily available, this paper also presents and describes the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set and a real data application involving annual precipitation to demonstrate the capabilities of the package.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Local likelihood estimation for covariance functions with spatially-varying parameters: the convoSPAT package for R\",\"authors\":\"M. Risser, Catherine A. Calder\",\"doi\":\"10.18637/JSS.V081.I14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology in nonstationary modeling with other existing methods, and as a result most new models are simply compared to stationary models. Using a convolution-based approach, we present a new nonstationary covariance function for spatial Gaussian process models that allows for efficient computing in two ways: first, by representing the spatially-varying parameters via a discrete mixture or \\\"mixture component\\\" model, and second, by estimating the mixture component parameters through a local likelihood approach. In order to make computation for a convolution-based nonstationary spatial model readily available, this paper also presents and describes the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set and a real data application involving annual precipitation to demonstrate the capabilities of the package.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V081.I14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18637/JSS.V081.I14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

尽管基于卷积的非平稳空间建模方法引起了人们的兴趣和吸引力,但用于模型拟合的现成软件尚未存在。基于卷积的模型非常灵活,但即使是相对较小的数据集,也很难拟合。由于模型拟合通常缺乏预先打包的选项,因此很难将非平稳建模中的新方法与其他现有方法进行比较,因此大多数新模型只是与平稳模型进行比较。使用基于卷积的方法,我们为空间高斯过程模型提出了一个新的非平稳协方差函数,该函数允许以两种方式进行高效计算:首先,通过离散混合或“混合成分”模型表示空间变化的参数,其次,通过局部似然方法估计混合成分参数。为了方便地计算基于卷积的非平稳空间模型,本文还提出并描述了r的convoSPAT包。非平稳模型适合于合成数据集和涉及年降水的实际数据应用,以证明该包的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Local likelihood estimation for covariance functions with spatially-varying parameters: the convoSPAT package for R
In spite of the interest in and appeal of convolution-based approaches for nonstationary spatial modeling, off-the-shelf software for model fitting does not as of yet exist. Convolution-based models are highly flexible yet notoriously difficult to fit, even with relatively small data sets. The general lack of pre-packaged options for model fitting makes it difficult to compare new methodology in nonstationary modeling with other existing methods, and as a result most new models are simply compared to stationary models. Using a convolution-based approach, we present a new nonstationary covariance function for spatial Gaussian process models that allows for efficient computing in two ways: first, by representing the spatially-varying parameters via a discrete mixture or "mixture component" model, and second, by estimating the mixture component parameters through a local likelihood approach. In order to make computation for a convolution-based nonstationary spatial model readily available, this paper also presents and describes the convoSPAT package for R. The nonstationary model is fit to both a synthetic data set and a real data application involving annual precipitation to demonstrate the capabilities of the package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Double Happiness: Enhancing the Coupled Gains of L-lag Coupling via Control Variates. SCOREDRIVENMODELS.JL: A JULIA PACKAGE FOR GENERALIZED AUTOREGRESSIVE SCORE MODELS Simple conditions for convergence of sequential Monte Carlo genealogies with applications Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels Particle Methods for Stochastic Differential Equation Mixed Effects Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1