印度尼西亚卫星日雨量估算值的验证

Fatkhuroyan Fatkhuroyan, T. Wati, Alfan Sukmana, Roni Kurniawan
{"title":"印度尼西亚卫星日雨量估算值的验证","authors":"Fatkhuroyan Fatkhuroyan, T. Wati, Alfan Sukmana, Roni Kurniawan","doi":"10.23917/FORGEO.V32I2.6288","DOIUrl":null,"url":null,"abstract":"Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.","PeriodicalId":31244,"journal":{"name":"Forum Geografi","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Validation of Satellite Daily Rainfall Estimates Over Indonesia\",\"authors\":\"Fatkhuroyan Fatkhuroyan, T. Wati, Alfan Sukmana, Roni Kurniawan\",\"doi\":\"10.23917/FORGEO.V32I2.6288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.\",\"PeriodicalId\":31244,\"journal\":{\"name\":\"Forum Geografi\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Geografi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23917/FORGEO.V32I2.6288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Geografi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23917/FORGEO.V32I2.6288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

降雨是地球水和能量循环中最重要的因素。这项研究的目的是通过参考印度尼西亚海洋大陆的每日降雨量测量值来评估全球降雨卫星测绘(GSMaP)数据的准确性。我们比较了2014年3月至2017年12月GSMaP移动卡尔曼滤波(MVK)的日降雨量数据与印度尼西亚152个雨量观测站的读数。结果表明,相关系数(CC)在雨季具有较好的验证性,均方根误差(RMSE)在旱季具有较好的验证性。巴厘岛- ntt的比例正确率(PC)值最高,而加里曼丹的检测概率(POD)和虚警率(FAR)值最高。与印尼观测数据相比,GSMaP-MVK数据被高估,2014年、2015年、2016年和2017年的日降雨量估计平均精度分别为85.47%、85.74%、82.73和82.59%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Validation of Satellite Daily Rainfall Estimates Over Indonesia
Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
11
审稿时长
15 weeks
期刊最新文献
Tourism Investment and Land Use Change in the Northern Piedmont of the Western High Atlas (1989-2022) Criminological Insights: A Comprehensive Spatial Analysis of Crime Hot Spots of Property Offenses in Malaysia's Urban Centers Analysis of Chlorophyll-a Variability in the Eastern Indonesian Waters Using Sentinel-3 OLCI from 2020-2021 Spatial Modelling Analysis for Potential Expansion of Cipanas City Candidate Area as Autonomous City Localizing Global Standards in Toba, Indonesia Through a Tourist-Centric Perspective On UNESCO Guidelines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1