Fatkhuroyan Fatkhuroyan, T. Wati, Alfan Sukmana, Roni Kurniawan
{"title":"印度尼西亚卫星日雨量估算值的验证","authors":"Fatkhuroyan Fatkhuroyan, T. Wati, Alfan Sukmana, Roni Kurniawan","doi":"10.23917/FORGEO.V32I2.6288","DOIUrl":null,"url":null,"abstract":"Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.","PeriodicalId":31244,"journal":{"name":"Forum Geografi","volume":"156 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Validation of Satellite Daily Rainfall Estimates Over Indonesia\",\"authors\":\"Fatkhuroyan Fatkhuroyan, T. Wati, Alfan Sukmana, Roni Kurniawan\",\"doi\":\"10.23917/FORGEO.V32I2.6288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.\",\"PeriodicalId\":31244,\"journal\":{\"name\":\"Forum Geografi\",\"volume\":\"156 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Geografi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23917/FORGEO.V32I2.6288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Geografi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23917/FORGEO.V32I2.6288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Validation of Satellite Daily Rainfall Estimates Over Indonesia
Rainfall is the most important factor in the Earth’s water and energy cycles. The aim of this research is to evaluate the accuracy of Global Satellite Mapping of Rainfall (GSMaP) data by referencing daily rain-gauged rainfall measurements across the Indonesian Maritime Continent. We compare the daily rainfall data from GSMaP Moving Kalman Filter (MVK) to readings from 152 rain-gauge observation stations across Indonesia from March 2014 to December 2017. The results show that the correlation coefficient (CC) provides better validation in the rainy season while root mean square error (RMSE) is more accurate in the dry season. The highest proportion correct (PC) value is obtained for Bali-NTT, while the highest probability of detection (POD) and false alarm ratio (FAR) values are obtained for Kalimantan. GSMaP-MVK data is over-estimated compared to observations in Indonesia, with the mean accuracy for daily rainfall estimation being 85.47% in 2014, 85.74% in 2015, 82.73 in 2016, and 82.59% in 2017.