注入柠檬酸异丁基酯降低原油与二氧化碳最低混相压力的研究

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/OGST/2021007
Guangjuan Fan, Yuejun Zhao, Yilin Li, Xiaodan Zhang, Hao Chen
{"title":"注入柠檬酸异丁基酯降低原油与二氧化碳最低混相压力的研究","authors":"Guangjuan Fan, Yuejun Zhao, Yilin Li, Xiaodan Zhang, Hao Chen","doi":"10.2516/OGST/2021007","DOIUrl":null,"url":null,"abstract":"Carbon dioxide miscible flooding has become one of the important technologies for improving oil recovery. The Minimum Miscible Pressure (MMP) is the key parameter to realize miscible flooding. As the MMP in the research area is higher than the formation fracture pressure, miscible flooding cannot be formed. To address this problem, it is necessary to find a way to reduce the MMP. Citric acid isobutyl ester is chosen to reduce the MMP of carbon dioxide and crude oil in this research. The effect of citric acid isobutyl ester on reducing the MMP was measured by the method of long-slim-tube displacement experiment. The experiment results show that the MMP is 29.6 MPa and can be obviously reduced by injecting the slug of citric acid isobutyl ester. The MMP could decrease gradually with constantly adding the injected slug of citric acid isobutyl ester, but the decrease becomes smaller and smaller. The optimum injected slug size of the chemical reagent is 0.003 PV. Under the condition of the slug size, the MMP is reduced to 23.5 MPa and the reduction is 6.1 MPa.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Research for reducing the Minimum Miscible Pressure of crude oil and carbon dioxide by injecting citric acid isobutyl ester\",\"authors\":\"Guangjuan Fan, Yuejun Zhao, Yilin Li, Xiaodan Zhang, Hao Chen\",\"doi\":\"10.2516/OGST/2021007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon dioxide miscible flooding has become one of the important technologies for improving oil recovery. The Minimum Miscible Pressure (MMP) is the key parameter to realize miscible flooding. As the MMP in the research area is higher than the formation fracture pressure, miscible flooding cannot be formed. To address this problem, it is necessary to find a way to reduce the MMP. Citric acid isobutyl ester is chosen to reduce the MMP of carbon dioxide and crude oil in this research. The effect of citric acid isobutyl ester on reducing the MMP was measured by the method of long-slim-tube displacement experiment. The experiment results show that the MMP is 29.6 MPa and can be obviously reduced by injecting the slug of citric acid isobutyl ester. The MMP could decrease gradually with constantly adding the injected slug of citric acid isobutyl ester, but the decrease becomes smaller and smaller. The optimum injected slug size of the chemical reagent is 0.003 PV. Under the condition of the slug size, the MMP is reduced to 23.5 MPa and the reduction is 6.1 MPa.\",\"PeriodicalId\":19424,\"journal\":{\"name\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2516/OGST/2021007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2021007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 5

摘要

二氧化碳混相驱已成为提高采收率的重要技术之一。最小混相压力(MMP)是实现混相驱的关键参数。由于研究区MMP高于地层破裂压力,无法形成混相驱。为了解决这个问题,有必要找到一种减少MMP的方法。本研究选择柠檬酸异丁基酯来降低二氧化碳和原油的MMP。采用长细管置换法测定了柠檬酸异丁基酯对MMP的还原作用。实验结果表明,注入柠檬酸异丁基酯段塞可以明显降低MMP为29.6 MPa。随着注入柠檬酸异丁基酯段塞的不断加入,MMP可以逐渐降低,但降低幅度越来越小。化学试剂的最佳注入段塞尺寸为0.003 PV。在段塞尺寸相同的条件下,MMP减小至23.5 MPa,减小幅度为6.1 MPa。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research for reducing the Minimum Miscible Pressure of crude oil and carbon dioxide by injecting citric acid isobutyl ester
Carbon dioxide miscible flooding has become one of the important technologies for improving oil recovery. The Minimum Miscible Pressure (MMP) is the key parameter to realize miscible flooding. As the MMP in the research area is higher than the formation fracture pressure, miscible flooding cannot be formed. To address this problem, it is necessary to find a way to reduce the MMP. Citric acid isobutyl ester is chosen to reduce the MMP of carbon dioxide and crude oil in this research. The effect of citric acid isobutyl ester on reducing the MMP was measured by the method of long-slim-tube displacement experiment. The experiment results show that the MMP is 29.6 MPa and can be obviously reduced by injecting the slug of citric acid isobutyl ester. The MMP could decrease gradually with constantly adding the injected slug of citric acid isobutyl ester, but the decrease becomes smaller and smaller. The optimum injected slug size of the chemical reagent is 0.003 PV. Under the condition of the slug size, the MMP is reduced to 23.5 MPa and the reduction is 6.1 MPa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1