5G基站启动前附近的最大电场估计

A. Lebl, Đurađ Budimir
{"title":"5G基站启动前附近的最大电场估计","authors":"A. Lebl, Đurađ Budimir","doi":"10.5937/vojtehg71-42426","DOIUrl":null,"url":null,"abstract":"Introduction/purpose: This paper presents initial development of the procedure for electric field estimation in the vicinity of 5G base stations. Methods: The procedure allows determination of future radiation levels before traffic is established over applied antenna systems on the basis of measured values of electric field levels caused by the signal forming Synchronization Signal Block. It is possible to perform necessary calculations for a very accurate estimation even if some important parameters of the radiation characteristics (such as the frequency span between the frequency carriers on the radio interface) are not a priori known. In this way, communication with mobile system operators before measurement is significantly simplified because operators do not need to know system technical details. Results: The developed formula for electric field estimation is verified comparing the calculated values by its implementation to the practical results obtained by intensive measurements on a great number of 5G base stations in a highly developed country. The formula gives a pessimistic result, i.e. a higher electric field level than it is obtained by all such performed measurements. Conclusion: This estimation allows mobile system operators to predict whether the electromagnetic field around base stations could be dangerous for human health when systems come to full operation while considering national and international recommendations dealing with radiation levels.","PeriodicalId":30576,"journal":{"name":"Vojnotehnicki Glasnik","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum electric field estimation in the vicinity of 5G base stations before their start-up\",\"authors\":\"A. Lebl, Đurađ Budimir\",\"doi\":\"10.5937/vojtehg71-42426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction/purpose: This paper presents initial development of the procedure for electric field estimation in the vicinity of 5G base stations. Methods: The procedure allows determination of future radiation levels before traffic is established over applied antenna systems on the basis of measured values of electric field levels caused by the signal forming Synchronization Signal Block. It is possible to perform necessary calculations for a very accurate estimation even if some important parameters of the radiation characteristics (such as the frequency span between the frequency carriers on the radio interface) are not a priori known. In this way, communication with mobile system operators before measurement is significantly simplified because operators do not need to know system technical details. Results: The developed formula for electric field estimation is verified comparing the calculated values by its implementation to the practical results obtained by intensive measurements on a great number of 5G base stations in a highly developed country. The formula gives a pessimistic result, i.e. a higher electric field level than it is obtained by all such performed measurements. Conclusion: This estimation allows mobile system operators to predict whether the electromagnetic field around base stations could be dangerous for human health when systems come to full operation while considering national and international recommendations dealing with radiation levels.\",\"PeriodicalId\":30576,\"journal\":{\"name\":\"Vojnotehnicki Glasnik\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vojnotehnicki Glasnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/vojtehg71-42426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vojnotehnicki Glasnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/vojtehg71-42426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简介/目的:本文介绍了5G基站附近电场估计程序的初步进展。方法:根据信号形成同步信号块引起的电场水平的测量值,该程序允许在应用天线系统上建立交通之前确定未来的辐射水平。即使辐射特性的一些重要参数(如无线电接口上频率载波之间的频率跨度)不是先验已知的,也有可能进行必要的计算以进行非常精确的估计。这样,在测量前与移动系统运营商的沟通就大大简化了,因为运营商不需要知道系统的技术细节。结果:将所建立的电场估计公式与在高度发达国家大量5G基站上密集测量得到的实际结果进行对比,验证了该公式的计算值。该公式给出了一个悲观的结果,即比所有这些测量得到的电场水平更高。结论:这一估计使移动系统运营商能够在考虑有关辐射水平的国家和国际建议的同时,预测当系统全面运行时,基站周围的电磁场是否会对人类健康构成危险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximum electric field estimation in the vicinity of 5G base stations before their start-up
Introduction/purpose: This paper presents initial development of the procedure for electric field estimation in the vicinity of 5G base stations. Methods: The procedure allows determination of future radiation levels before traffic is established over applied antenna systems on the basis of measured values of electric field levels caused by the signal forming Synchronization Signal Block. It is possible to perform necessary calculations for a very accurate estimation even if some important parameters of the radiation characteristics (such as the frequency span between the frequency carriers on the radio interface) are not a priori known. In this way, communication with mobile system operators before measurement is significantly simplified because operators do not need to know system technical details. Results: The developed formula for electric field estimation is verified comparing the calculated values by its implementation to the practical results obtained by intensive measurements on a great number of 5G base stations in a highly developed country. The formula gives a pessimistic result, i.e. a higher electric field level than it is obtained by all such performed measurements. Conclusion: This estimation allows mobile system operators to predict whether the electromagnetic field around base stations could be dangerous for human health when systems come to full operation while considering national and international recommendations dealing with radiation levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊最新文献
Data security in mobile healthcare On the spectral radius of VDB graph matrices Numerical methods and their application in dynamics of structures Application of the modeling method to the calculation of the probability of hitting a stationary target during the fire action of a tank squad in defense Supersymmetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1