免费视点视频的体验质量评估

Rongli Jia, Yuhong Zhang, Jun Xu, Wenjun Zhang, Li Song, Lin Li, Yanan Feng
{"title":"免费视点视频的体验质量评估","authors":"Rongli Jia, Yuhong Zhang, Jun Xu, Wenjun Zhang, Li Song, Lin Li, Yanan Feng","doi":"10.1109/BMSB58369.2023.10211612","DOIUrl":null,"url":null,"abstract":"The evaluation of free-viewpoint video (FVV) quality is essential for improving the quality of experience (QoE). Prior deep video quality assessment (VQA) approaches for FVV typically focused on either spatial or temporal distortions and lacked a comprehensive assessment considering the two aspects. In this paper, we provide an end-to-end no-reference video quality assessment (NRVQA) model for FVV that predicts video quality scores based on both spatial and temporal features. It consists of a spatial feature perception module, a temporal motion feature perception module and a quality score fusion module. In order to provide a quality score that is highly relevant to the mean opinion score (MOS) from the subjective quality assessment experiment, the quality-related features in the spatial and temporal domains of FVV are effectively utilized and merged. Experimental results show that the PLCC and SRCC improved by 25.0% and 18.5%, respectively, compared to state-of-the-art method. Moreover, the ablation experiments demonstrate the importance of both spatial features and temporal motion features.","PeriodicalId":13080,"journal":{"name":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","volume":"121 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality of Experience Assessment for Free-viewpoint Video\",\"authors\":\"Rongli Jia, Yuhong Zhang, Jun Xu, Wenjun Zhang, Li Song, Lin Li, Yanan Feng\",\"doi\":\"10.1109/BMSB58369.2023.10211612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evaluation of free-viewpoint video (FVV) quality is essential for improving the quality of experience (QoE). Prior deep video quality assessment (VQA) approaches for FVV typically focused on either spatial or temporal distortions and lacked a comprehensive assessment considering the two aspects. In this paper, we provide an end-to-end no-reference video quality assessment (NRVQA) model for FVV that predicts video quality scores based on both spatial and temporal features. It consists of a spatial feature perception module, a temporal motion feature perception module and a quality score fusion module. In order to provide a quality score that is highly relevant to the mean opinion score (MOS) from the subjective quality assessment experiment, the quality-related features in the spatial and temporal domains of FVV are effectively utilized and merged. Experimental results show that the PLCC and SRCC improved by 25.0% and 18.5%, respectively, compared to state-of-the-art method. Moreover, the ablation experiments demonstrate the importance of both spatial features and temporal motion features.\",\"PeriodicalId\":13080,\"journal\":{\"name\":\"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting\",\"volume\":\"121 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMSB58369.2023.10211612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE international Symposium on Broadband Multimedia Systems and Broadcasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMSB58369.2023.10211612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自由视点视频(FVV)质量评价是提高视频体验质量的关键。以往的深度视频质量评估(VQA)方法通常侧重于空间或时间畸变,缺乏考虑这两个方面的综合评估。在本文中,我们为FVV提供了一个端到端的无参考视频质量评估(NRVQA)模型,该模型基于空间和时间特征预测视频质量分数。它由空间特征感知模块、时间运动特征感知模块和质量分数融合模块组成。为了提供与主观质量评价实验的平均意见分数(MOS)高度相关的质量分数,有效地利用和融合了FVV在空间和时间域的质量相关特征。实验结果表明,与现有方法相比,PLCC和SRCC分别提高了25.0%和18.5%。此外,烧蚀实验证明了空间特征和时间运动特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality of Experience Assessment for Free-viewpoint Video
The evaluation of free-viewpoint video (FVV) quality is essential for improving the quality of experience (QoE). Prior deep video quality assessment (VQA) approaches for FVV typically focused on either spatial or temporal distortions and lacked a comprehensive assessment considering the two aspects. In this paper, we provide an end-to-end no-reference video quality assessment (NRVQA) model for FVV that predicts video quality scores based on both spatial and temporal features. It consists of a spatial feature perception module, a temporal motion feature perception module and a quality score fusion module. In order to provide a quality score that is highly relevant to the mean opinion score (MOS) from the subjective quality assessment experiment, the quality-related features in the spatial and temporal domains of FVV are effectively utilized and merged. Experimental results show that the PLCC and SRCC improved by 25.0% and 18.5%, respectively, compared to state-of-the-art method. Moreover, the ablation experiments demonstrate the importance of both spatial features and temporal motion features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Task Offloading Based on Scalable DAG in Cell-Free HetMEC Networks Resource Pre-caching Strategy of Digital Twin System Based on Hierarchical MEC Architecture Research on key technologies of audiovisual media microservices and industry applications A Closed-loop Operation and Maintenance Architecture based on Digital Twin for Electric Power Communication Networks Edge Fusion of Intelligent Industrial Park Based on MatrixOne and Pravega
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1