气候变暖增加了热带常见的沙蛙(Eleutherodactylus coqui)的活动

T.J. Hawley Matlaga , P.A. Burrowes , R. Hernández-Pacheco , J. Pena , C. Sutherland , T.E. Wood
{"title":"气候变暖增加了热带常见的沙蛙(Eleutherodactylus coqui)的活动","authors":"T.J. Hawley Matlaga ,&nbsp;P.A. Burrowes ,&nbsp;R. Hernández-Pacheco ,&nbsp;J. Pena ,&nbsp;C. Sutherland ,&nbsp;T.E. Wood","doi":"10.1016/j.ecochg.2021.100041","DOIUrl":null,"url":null,"abstract":"<div><p>Tropical ecosystems are expected to experience climate warming, with predicted increases in drying and heat extremes in the coming years. Understanding how these changes will affect terrestrial vertebrates such as amphibians is limited. The Tropical Responses to Altered Climate Experiment in the Luquillo Experimental Forest in northeastern Puerto Rico allows us to study how the tropical forest responds to warming within a replicated plot design. From September 2018 to August 2019, we used mark-recapture sampling to investigate how the spatial population ecology of the common coqui frog (<em>Eleutherodactylus coqui</em>) is impacted by experimentally increasing surface temperatures by 4 °C above ambient. We compared estimates of baseline detection, space use, and the density of frogs in control and warmed plots. Coqui space use and population density did not differ between control and warmed plots. However, coqui detection probabilities were higher in warmed plots, suggesting an increased level of activity relative to individuals in the control (unwarmed) plots. Frog detection increased in all plots with increased precipitation. Our results suggest that, at least in the short-term, the density of an ecological generalist frog like <em>E. coqui</em> does not change as a response to increased surface temperatures. However, short-term responses to warming such as changes in behavior may lead to changes in population dynamics in the long-term. Our research highlights the need to consider mutiple repsonses in order to understand the effects of climate warming on tropical vertebrates.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100041"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666900521000411/pdfft?md5=e607267fbbe836e06f654099691e82d1&pid=1-s2.0-S2666900521000411-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Warming increases activity in the common tropical frog Eleutherodactylus coqui\",\"authors\":\"T.J. Hawley Matlaga ,&nbsp;P.A. Burrowes ,&nbsp;R. Hernández-Pacheco ,&nbsp;J. Pena ,&nbsp;C. Sutherland ,&nbsp;T.E. Wood\",\"doi\":\"10.1016/j.ecochg.2021.100041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tropical ecosystems are expected to experience climate warming, with predicted increases in drying and heat extremes in the coming years. Understanding how these changes will affect terrestrial vertebrates such as amphibians is limited. The Tropical Responses to Altered Climate Experiment in the Luquillo Experimental Forest in northeastern Puerto Rico allows us to study how the tropical forest responds to warming within a replicated plot design. From September 2018 to August 2019, we used mark-recapture sampling to investigate how the spatial population ecology of the common coqui frog (<em>Eleutherodactylus coqui</em>) is impacted by experimentally increasing surface temperatures by 4 °C above ambient. We compared estimates of baseline detection, space use, and the density of frogs in control and warmed plots. Coqui space use and population density did not differ between control and warmed plots. However, coqui detection probabilities were higher in warmed plots, suggesting an increased level of activity relative to individuals in the control (unwarmed) plots. Frog detection increased in all plots with increased precipitation. Our results suggest that, at least in the short-term, the density of an ecological generalist frog like <em>E. coqui</em> does not change as a response to increased surface temperatures. However, short-term responses to warming such as changes in behavior may lead to changes in population dynamics in the long-term. Our research highlights the need to consider mutiple repsonses in order to understand the effects of climate warming on tropical vertebrates.</p></div>\",\"PeriodicalId\":100260,\"journal\":{\"name\":\"Climate Change Ecology\",\"volume\":\"2 \",\"pages\":\"Article 100041\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666900521000411/pdfft?md5=e607267fbbe836e06f654099691e82d1&pid=1-s2.0-S2666900521000411-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Change Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666900521000411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900521000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预计热带生态系统将经历气候变暖,预计未来几年干旱和极端高温事件将增加。对这些变化将如何影响两栖类等陆生脊椎动物的了解是有限的。在波多黎各东北部的Luquillo实验森林中进行的热带对气候变化的反应实验使我们能够在一个重复的地块设计中研究热带森林对变暖的反应。从2018年9月到2019年8月,我们采用标记再捕获抽样的方法,研究了地表温度比环境温度高4℃对普通coqui蛙(Eleutherodactylus coqui)空间种群生态的影响。我们比较了基线检测、空间使用和对照组和暖样地青蛙密度的估计。Coqui的空间利用和人口密度在对照组和暖地之间没有差异。然而,coqui检测概率在温暖的地块更高,表明相对于对照(未温暖的)地块的个体,活动水平增加。随着降水量的增加,各样地的蛙类检出率均有所增加。我们的研究结果表明,至少在短期内,像E. coqui这样的生态多面手蛙的密度不会随着地表温度的升高而改变。然而,对气候变暖的短期反应,如行为的变化,可能导致长期人口动态的变化。我们的研究强调,为了了解气候变暖对热带脊椎动物的影响,需要考虑多种反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Warming increases activity in the common tropical frog Eleutherodactylus coqui

Tropical ecosystems are expected to experience climate warming, with predicted increases in drying and heat extremes in the coming years. Understanding how these changes will affect terrestrial vertebrates such as amphibians is limited. The Tropical Responses to Altered Climate Experiment in the Luquillo Experimental Forest in northeastern Puerto Rico allows us to study how the tropical forest responds to warming within a replicated plot design. From September 2018 to August 2019, we used mark-recapture sampling to investigate how the spatial population ecology of the common coqui frog (Eleutherodactylus coqui) is impacted by experimentally increasing surface temperatures by 4 °C above ambient. We compared estimates of baseline detection, space use, and the density of frogs in control and warmed plots. Coqui space use and population density did not differ between control and warmed plots. However, coqui detection probabilities were higher in warmed plots, suggesting an increased level of activity relative to individuals in the control (unwarmed) plots. Frog detection increased in all plots with increased precipitation. Our results suggest that, at least in the short-term, the density of an ecological generalist frog like E. coqui does not change as a response to increased surface temperatures. However, short-term responses to warming such as changes in behavior may lead to changes in population dynamics in the long-term. Our research highlights the need to consider mutiple repsonses in order to understand the effects of climate warming on tropical vertebrates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
期刊最新文献
Anticipated impacts in habitat of diagnostic species of potential natural vegetations due to climate change at the ecotone between temperate and boreal forests Will global warming reduce the nutritional quality of wild blueberries? Experimental exposure to winter thaws reveals tipping point in yellow birch bud mortality and phenology in the northern temperate forest of Québec, Canada Deerly departed: Using motor-vehicle accidents to determine factors influencing white-tailed deer rut timing in Ontario, Canada Future sea-level rise impacts to Olive Ridley (Lepidochelys olivacea) and Green Sea Turtle (Chelonia mydas) nesting habitat on the Osa Peninsula, Costa Rica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1