Maia Raymundo , Abigail Pastore , Janneke HilleRisLambers , Margaret M. Mayfield
{"title":"年降雨量变化和扩散限制共同改变了入侵植物群落多样性、优势等级和种子物候","authors":"Maia Raymundo , Abigail Pastore , Janneke HilleRisLambers , Margaret M. Mayfield","doi":"10.1016/j.ecochg.2021.100024","DOIUrl":null,"url":null,"abstract":"<div><p>Natural ecosystems are threatened by climate change, fragmentation, and non-native species. Dispersal-limitation potentially compounds impacts of these factors on plant diversity, especially in isolated vegetation patches. Changes in climate can impact the phenology of native species in distinct ways from non-natives, potentially resulting in cascading impacts on native communities. Few empirical studies have examined the combined effects of climate change and dispersal limitation on community diversity or phenology. Using a five-year dispersal-restriction experiment in an invaded semi-arid annual plant system in Western Australia, we investigated the interactive effects of dispersal-restriction and inter-annual rainfall variation on community composition, species dominance and seed production timing. We found inter-annual rainfall variation to be the principal driver of community dynamics. Drought years had long-term, stable effects on community composition, with evidence of shifts from native toward non-native dominance. Surprisingly, community composition remained largely unchanged under dispersal restriction. A subtle ‘dispersal rescue’ effect was evident for a dominant native annual forb and a dominant annual non-native grass but only in average rainfall years. The timing of seed production was primarily driven by annual rainfall with native and non-native grasses having opposite responses. There was no evidence that inter-annual variation in seeding timing affected community diversity over time. Our study demonstrates that dispersal is not a major factor in driving community diversity in this invaded, semi-arid system. Results do suggest, however, that increases in drought frequency likely benefit non-native species over natives in the long term.</p></div>","PeriodicalId":100260,"journal":{"name":"Climate Change Ecology","volume":"2 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100024","citationCount":"3","resultStr":"{\"title\":\"Annual rainfall variation and dispersal limitation combine to alter invaded plant community diversity, dominance hierarchies and seeding phenology\",\"authors\":\"Maia Raymundo , Abigail Pastore , Janneke HilleRisLambers , Margaret M. Mayfield\",\"doi\":\"10.1016/j.ecochg.2021.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural ecosystems are threatened by climate change, fragmentation, and non-native species. Dispersal-limitation potentially compounds impacts of these factors on plant diversity, especially in isolated vegetation patches. Changes in climate can impact the phenology of native species in distinct ways from non-natives, potentially resulting in cascading impacts on native communities. Few empirical studies have examined the combined effects of climate change and dispersal limitation on community diversity or phenology. Using a five-year dispersal-restriction experiment in an invaded semi-arid annual plant system in Western Australia, we investigated the interactive effects of dispersal-restriction and inter-annual rainfall variation on community composition, species dominance and seed production timing. We found inter-annual rainfall variation to be the principal driver of community dynamics. Drought years had long-term, stable effects on community composition, with evidence of shifts from native toward non-native dominance. Surprisingly, community composition remained largely unchanged under dispersal restriction. A subtle ‘dispersal rescue’ effect was evident for a dominant native annual forb and a dominant annual non-native grass but only in average rainfall years. The timing of seed production was primarily driven by annual rainfall with native and non-native grasses having opposite responses. There was no evidence that inter-annual variation in seeding timing affected community diversity over time. Our study demonstrates that dispersal is not a major factor in driving community diversity in this invaded, semi-arid system. Results do suggest, however, that increases in drought frequency likely benefit non-native species over natives in the long term.</p></div>\",\"PeriodicalId\":100260,\"journal\":{\"name\":\"Climate Change Ecology\",\"volume\":\"2 \",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ecochg.2021.100024\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate Change Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666900521000241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Change Ecology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666900521000241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Annual rainfall variation and dispersal limitation combine to alter invaded plant community diversity, dominance hierarchies and seeding phenology
Natural ecosystems are threatened by climate change, fragmentation, and non-native species. Dispersal-limitation potentially compounds impacts of these factors on plant diversity, especially in isolated vegetation patches. Changes in climate can impact the phenology of native species in distinct ways from non-natives, potentially resulting in cascading impacts on native communities. Few empirical studies have examined the combined effects of climate change and dispersal limitation on community diversity or phenology. Using a five-year dispersal-restriction experiment in an invaded semi-arid annual plant system in Western Australia, we investigated the interactive effects of dispersal-restriction and inter-annual rainfall variation on community composition, species dominance and seed production timing. We found inter-annual rainfall variation to be the principal driver of community dynamics. Drought years had long-term, stable effects on community composition, with evidence of shifts from native toward non-native dominance. Surprisingly, community composition remained largely unchanged under dispersal restriction. A subtle ‘dispersal rescue’ effect was evident for a dominant native annual forb and a dominant annual non-native grass but only in average rainfall years. The timing of seed production was primarily driven by annual rainfall with native and non-native grasses having opposite responses. There was no evidence that inter-annual variation in seeding timing affected community diversity over time. Our study demonstrates that dispersal is not a major factor in driving community diversity in this invaded, semi-arid system. Results do suggest, however, that increases in drought frequency likely benefit non-native species over natives in the long term.