广义光学MIMO联合检测:一种深度学习方法

X. Zhong, Chen Chen, Lin Zeng, Ruochen Zhang, Yuru Tang, Yungui Nie, Min Liu
{"title":"广义光学MIMO联合检测:一种深度学习方法","authors":"X. Zhong, Chen Chen, Lin Zeng, Ruochen Zhang, Yuru Tang, Yungui Nie, Min Liu","doi":"10.1109/ICIEA51954.2021.9516406","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of generalized optical multiple-input multiple-output (MIMO) systems using a deep learning-enabled joint detection scheme. In the generalized optical MIMO system applying both generalized spatial modulation (GSM) and generalized spatial multiplexing (GSMP), a fully connected deep neural network (DNN) is employed for the joint detection of spatial and constellation information. To efficiently train the DDN detector, the received signal after zero-forcing (ZF) equalization is taken as the input while the corresponding transmitted binary bits are used as the output. Our simulation shows that, in a 4 × 4 generalized optical MIMO system with two activated light-emitting diode (LED) transmitters, the ZF-DNN detector can achieve comparable bit error rate (BER) performance as the high-complexity joint maximum-likelihood (ML) detector in the high signal-to-noise ratio (SNR) region for both GSM and GSMP. Moreover, the ZF-DNN detector achieves substantially improved BER performance than the conventional ZF-based maximum-likelihood (ML) detector. Due to the ability to eliminate error propagation, the performance gain of GSMP over GSM is greatly improved by using the ZF-DNN detector in comparison to the ZF-ML detector.","PeriodicalId":6809,"journal":{"name":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","volume":"42 1","pages":"1317-1321"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint Detection for Generalized Optical MIMO: A Deep Learning Approach\",\"authors\":\"X. Zhong, Chen Chen, Lin Zeng, Ruochen Zhang, Yuru Tang, Yungui Nie, Min Liu\",\"doi\":\"10.1109/ICIEA51954.2021.9516406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the performance of generalized optical multiple-input multiple-output (MIMO) systems using a deep learning-enabled joint detection scheme. In the generalized optical MIMO system applying both generalized spatial modulation (GSM) and generalized spatial multiplexing (GSMP), a fully connected deep neural network (DNN) is employed for the joint detection of spatial and constellation information. To efficiently train the DDN detector, the received signal after zero-forcing (ZF) equalization is taken as the input while the corresponding transmitted binary bits are used as the output. Our simulation shows that, in a 4 × 4 generalized optical MIMO system with two activated light-emitting diode (LED) transmitters, the ZF-DNN detector can achieve comparable bit error rate (BER) performance as the high-complexity joint maximum-likelihood (ML) detector in the high signal-to-noise ratio (SNR) region for both GSM and GSMP. Moreover, the ZF-DNN detector achieves substantially improved BER performance than the conventional ZF-based maximum-likelihood (ML) detector. Due to the ability to eliminate error propagation, the performance gain of GSMP over GSM is greatly improved by using the ZF-DNN detector in comparison to the ZF-ML detector.\",\"PeriodicalId\":6809,\"journal\":{\"name\":\"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"42 1\",\"pages\":\"1317-1321\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA51954.2021.9516406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA51954.2021.9516406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们使用一种支持深度学习的联合检测方案研究了广义光学多输入多输出(MIMO)系统的性能。在采用广义空间调制(GSM)和广义空间复用(GSMP)的广义光学MIMO系统中,采用全连接深度神经网络(DNN)对空间和星座信息进行联合检测。为了有效地训练DDN检测器,采用强制零均衡后的接收信号作为输入,相应的发送二进制作为输出。仿真结果表明,在具有两个激活发光二极管(LED)发射机的4 × 4广义光学MIMO系统中,在GSM和GSMP的高信噪比(SNR)区域,ZF-DNN检测器可以达到与高复杂度联合最大似然检测器相当的误码率(BER)性能。此外,与传统的基于zf的最大似然(ML)检测器相比,ZF-DNN检测器实现了显著改善的误码率性能。由于能够消除误差传播,与ZF-ML检测器相比,使用ZF-DNN检测器大大提高了GSMP在GSM上的性能增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Detection for Generalized Optical MIMO: A Deep Learning Approach
In this paper, we investigate the performance of generalized optical multiple-input multiple-output (MIMO) systems using a deep learning-enabled joint detection scheme. In the generalized optical MIMO system applying both generalized spatial modulation (GSM) and generalized spatial multiplexing (GSMP), a fully connected deep neural network (DNN) is employed for the joint detection of spatial and constellation information. To efficiently train the DDN detector, the received signal after zero-forcing (ZF) equalization is taken as the input while the corresponding transmitted binary bits are used as the output. Our simulation shows that, in a 4 × 4 generalized optical MIMO system with two activated light-emitting diode (LED) transmitters, the ZF-DNN detector can achieve comparable bit error rate (BER) performance as the high-complexity joint maximum-likelihood (ML) detector in the high signal-to-noise ratio (SNR) region for both GSM and GSMP. Moreover, the ZF-DNN detector achieves substantially improved BER performance than the conventional ZF-based maximum-likelihood (ML) detector. Due to the ability to eliminate error propagation, the performance gain of GSMP over GSM is greatly improved by using the ZF-DNN detector in comparison to the ZF-ML detector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative analysis of two kinds of subsynchronous oscillation of direct drive PMSG based wind farm dominated by inner current loop Path Optimization of Intelligent Wheelchair Based on an Improved Ant Colony Algorithm Linearization Design of Servo System and Parameter Identification Based on LuGre Model Adaptive gait generation based on pose graph optimization for Lower-limb Rehabilitation Exoskeleton Robot SVG control function and realization of modular multi-level DC ice melting device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1