间隙宽度和人工阻尼对间隙共振的影响

Ivan Ekerhovd, M. Ong, Wenhua Zhao
{"title":"间隙宽度和人工阻尼对间隙共振的影响","authors":"Ivan Ekerhovd, M. Ong, Wenhua Zhao","doi":"10.1115/omae2022-80758","DOIUrl":null,"url":null,"abstract":"\n Side-by-side offloading between two vessels in offshore operations, creates a narrow gap where blistering free surface motions may be excited due to resonant responses. The present study investigates what influence gap width and artificial damping has on these motions. We run a series of numerical simulations, based on a 3D linear potential flow solver using a numerically validated model from our previous work. The model is meant to simulate a floating liquefied natural gas (FLNG) facility, an LNG carrier, and the narrow gap created between them. In this study, the resonant fluid motions in the gap are investigated based on a configuration where both vessels are fixed. The results show a significant impact on the response of the gap resonance with diverse gap widths. By applying artificial damping to the free surface, we found that there is no significant effect on the resonant motions of the gap surface after the gap width reaches a significant fraction of one ship breadth.","PeriodicalId":23502,"journal":{"name":"Volume 1: Offshore Technology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Gap Width and Artificial Damping on Gap Resonance\",\"authors\":\"Ivan Ekerhovd, M. Ong, Wenhua Zhao\",\"doi\":\"10.1115/omae2022-80758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Side-by-side offloading between two vessels in offshore operations, creates a narrow gap where blistering free surface motions may be excited due to resonant responses. The present study investigates what influence gap width and artificial damping has on these motions. We run a series of numerical simulations, based on a 3D linear potential flow solver using a numerically validated model from our previous work. The model is meant to simulate a floating liquefied natural gas (FLNG) facility, an LNG carrier, and the narrow gap created between them. In this study, the resonant fluid motions in the gap are investigated based on a configuration where both vessels are fixed. The results show a significant impact on the response of the gap resonance with diverse gap widths. By applying artificial damping to the free surface, we found that there is no significant effect on the resonant motions of the gap surface after the gap width reaches a significant fraction of one ship breadth.\",\"PeriodicalId\":23502,\"journal\":{\"name\":\"Volume 1: Offshore Technology\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2022-80758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2022-80758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在海上作业中,两艘船之间的并排卸载会产生一个狭窄的间隙,在这个间隙中,由于共振响应,可能会激发起泡的自由表面运动。本文研究了间隙宽度和人工阻尼对这些运动的影响。我们运行了一系列的数值模拟,基于三维线性势流求解器,使用我们之前工作中的数值验证模型。该模型旨在模拟浮式液化天然气(FLNG)设施、液化天然气运输船以及它们之间的窄间隙。在本研究中,基于两个容器固定的配置,研究了间隙中的共振流体运动。结果表明,不同的间隙宽度对间隙共振的响应有显著影响。通过对自由表面施加人工阻尼,我们发现当间隙宽度达到一船宽度的显著分数后,对间隙表面的共振运动没有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Gap Width and Artificial Damping on Gap Resonance
Side-by-side offloading between two vessels in offshore operations, creates a narrow gap where blistering free surface motions may be excited due to resonant responses. The present study investigates what influence gap width and artificial damping has on these motions. We run a series of numerical simulations, based on a 3D linear potential flow solver using a numerically validated model from our previous work. The model is meant to simulate a floating liquefied natural gas (FLNG) facility, an LNG carrier, and the narrow gap created between them. In this study, the resonant fluid motions in the gap are investigated based on a configuration where both vessels are fixed. The results show a significant impact on the response of the gap resonance with diverse gap widths. By applying artificial damping to the free surface, we found that there is no significant effect on the resonant motions of the gap surface after the gap width reaches a significant fraction of one ship breadth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Importance of the Inertial Components in Modal State Covariances Prelude FLNG Free Weathervaning Heading Prediction and Uncertainties, Based on Machine Learning Model Applying Open Web Architectures Towards Collaborative Maritime Design and Simulation Joint-Industry Effort to Develop and Verify CFD Modeling Practice for Predicting Wave Impact Dynamic Response of a Generic Self-Elevating Unit in Operation With Hull in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1