{"title":"减冲击力和关节力矩最小化的腿式机器人着陆运动","authors":"Xianglong Wan, T. Urakubo, Y. Tada","doi":"10.1109/RVSP.2013.65","DOIUrl":null,"url":null,"abstract":"This paper deals with an optimal landing motion of a 4-link legged robot that minimizes the impact force at the contact point and the joint torques necessary during the motion. The cost function for optimization is given as the weighted sum of the one for impact force and the one for joint torques. While the configuration where the leg is bent is advantageous in reducing the impact force, the configuration that is close to a singular configuration is advantageous in minimizing the joint torques. It is shown by numerical optimization results with different weights for the cost function.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"4 1","pages":"259-264"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Landing Motion of a Legged Robot with Impact Force Reduction and Joint Torque Minimization\",\"authors\":\"Xianglong Wan, T. Urakubo, Y. Tada\",\"doi\":\"10.1109/RVSP.2013.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with an optimal landing motion of a 4-link legged robot that minimizes the impact force at the contact point and the joint torques necessary during the motion. The cost function for optimization is given as the weighted sum of the one for impact force and the one for joint torques. While the configuration where the leg is bent is advantageous in reducing the impact force, the configuration that is close to a singular configuration is advantageous in minimizing the joint torques. It is shown by numerical optimization results with different weights for the cost function.\",\"PeriodicalId\":6585,\"journal\":{\"name\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"volume\":\"4 1\",\"pages\":\"259-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Second International Conference on Robot, Vision and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RVSP.2013.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Landing Motion of a Legged Robot with Impact Force Reduction and Joint Torque Minimization
This paper deals with an optimal landing motion of a 4-link legged robot that minimizes the impact force at the contact point and the joint torques necessary during the motion. The cost function for optimization is given as the weighted sum of the one for impact force and the one for joint torques. While the configuration where the leg is bent is advantageous in reducing the impact force, the configuration that is close to a singular configuration is advantageous in minimizing the joint torques. It is shown by numerical optimization results with different weights for the cost function.