A. Dębski, W. Gasior, W. Gierlotka, A. Baran, M. Polański
{"title":"镁-钯-银体系:液相热力学性质","authors":"A. Dębski, W. Gasior, W. Gierlotka, A. Baran, M. Polański","doi":"10.2298/jmmb230222016d","DOIUrl":null,"url":null,"abstract":"A drop calorimetry method was used to measure the partial and integral mixing enthalpies of Ag-Mg-Pd liquid solutions. The experiments were performed for six separate series of liquid alloys starting from the binary alloys with constant xAg/xMg ratios equal to 1/9, 1/3, 1/1, and 3/1 for (Ag0.10Mg0.90)1-xPdx and (Ag0.25Mg0.75)1-xPdx at 1116 K and (Ag0.50Mg0.50)1-xPdx and (Ag0.75Mg0.25)1-xPdx at 1279 K and xMg/xPd ratios of 9/1 and 8/1 for (Mg0.90Pd0.10)1-xAgx and (Mg0.80Pd0.20)1-xAgx at 1116 K. Then, using the thermodynamic properties of the binary systems in the form of the Redlich-Kister equations and the changes in mixing enthalpies provided by this study, the ternary interaction parameters were determined with the Muggianu model and our own software (TerGexHm). Based on the binary and ternary interaction parameters, the partial mixing enthalpies of Ag, Mg, and Pd were calculated for the same cross-sections where the measurements were conducted. These studies were the first step of an investigation of the Ag-Mg-Pd system before the calculation of the phase diagram for this ternary system.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"75 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The magnesium-palladium-silver system: Thermodynamic properties of the liquid phase\",\"authors\":\"A. Dębski, W. Gasior, W. Gierlotka, A. Baran, M. Polański\",\"doi\":\"10.2298/jmmb230222016d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A drop calorimetry method was used to measure the partial and integral mixing enthalpies of Ag-Mg-Pd liquid solutions. The experiments were performed for six separate series of liquid alloys starting from the binary alloys with constant xAg/xMg ratios equal to 1/9, 1/3, 1/1, and 3/1 for (Ag0.10Mg0.90)1-xPdx and (Ag0.25Mg0.75)1-xPdx at 1116 K and (Ag0.50Mg0.50)1-xPdx and (Ag0.75Mg0.25)1-xPdx at 1279 K and xMg/xPd ratios of 9/1 and 8/1 for (Mg0.90Pd0.10)1-xAgx and (Mg0.80Pd0.20)1-xAgx at 1116 K. Then, using the thermodynamic properties of the binary systems in the form of the Redlich-Kister equations and the changes in mixing enthalpies provided by this study, the ternary interaction parameters were determined with the Muggianu model and our own software (TerGexHm). Based on the binary and ternary interaction parameters, the partial mixing enthalpies of Ag, Mg, and Pd were calculated for the same cross-sections where the measurements were conducted. These studies were the first step of an investigation of the Ag-Mg-Pd system before the calculation of the phase diagram for this ternary system.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb230222016d\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb230222016d","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The magnesium-palladium-silver system: Thermodynamic properties of the liquid phase
A drop calorimetry method was used to measure the partial and integral mixing enthalpies of Ag-Mg-Pd liquid solutions. The experiments were performed for six separate series of liquid alloys starting from the binary alloys with constant xAg/xMg ratios equal to 1/9, 1/3, 1/1, and 3/1 for (Ag0.10Mg0.90)1-xPdx and (Ag0.25Mg0.75)1-xPdx at 1116 K and (Ag0.50Mg0.50)1-xPdx and (Ag0.75Mg0.25)1-xPdx at 1279 K and xMg/xPd ratios of 9/1 and 8/1 for (Mg0.90Pd0.10)1-xAgx and (Mg0.80Pd0.20)1-xAgx at 1116 K. Then, using the thermodynamic properties of the binary systems in the form of the Redlich-Kister equations and the changes in mixing enthalpies provided by this study, the ternary interaction parameters were determined with the Muggianu model and our own software (TerGexHm). Based on the binary and ternary interaction parameters, the partial mixing enthalpies of Ag, Mg, and Pd were calculated for the same cross-sections where the measurements were conducted. These studies were the first step of an investigation of the Ag-Mg-Pd system before the calculation of the phase diagram for this ternary system.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.