用密度泛函方法研究最窄扶手椅石墨烯纳米带的电子和光学性质

Chia-Nan Yeh, Pei-Yin Lee, Jeng-Da Chai
{"title":"用密度泛函方法研究最窄扶手椅石墨烯纳米带的电子和光学性质","authors":"Chia-Nan Yeh, Pei-Yin Lee, Jeng-Da Chai","doi":"10.1071/CH16187","DOIUrl":null,"url":null,"abstract":"In the present study, a series of planar poly(p-phenylene) (PPP) oligomers with n phenyl rings (n = 1 - 20), designated as n-PP, are taken as finite-size models of the narrowest armchair graphene nanoribbons with hydrogen passivation. The singlet-triplet energy gap, vertical ionization potential, vertical electron affinity, fundamental gap, optical gap, and exciton binding energy of n-PP are calculated using Kohn-Sham density functional theory and time-dependent density functional theory with various exchange-correlation density functionals. The ground state of n-PP is shown to be singlet for all the chain lengths studied. In contrast to the lowest singlet state (i.e., the ground state), the lowest triplet state and the ground states of the cation and anion of n-PP are found to exhibit some multi-reference character. Overall, the electronic and optical properties of n-PP obtained from the omegaB97 and omegaB97X functionals are in excellent agreement with the available experimental data.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods\",\"authors\":\"Chia-Nan Yeh, Pei-Yin Lee, Jeng-Da Chai\",\"doi\":\"10.1071/CH16187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, a series of planar poly(p-phenylene) (PPP) oligomers with n phenyl rings (n = 1 - 20), designated as n-PP, are taken as finite-size models of the narrowest armchair graphene nanoribbons with hydrogen passivation. The singlet-triplet energy gap, vertical ionization potential, vertical electron affinity, fundamental gap, optical gap, and exciton binding energy of n-PP are calculated using Kohn-Sham density functional theory and time-dependent density functional theory with various exchange-correlation density functionals. The ground state of n-PP is shown to be singlet for all the chain lengths studied. In contrast to the lowest singlet state (i.e., the ground state), the lowest triplet state and the ground states of the cation and anion of n-PP are found to exhibit some multi-reference character. Overall, the electronic and optical properties of n-PP obtained from the omegaB97 and omegaB97X functionals are in excellent agreement with the available experimental data.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/CH16187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/CH16187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本研究中,一系列具有n苯基环(n = 1 - 20)的平面聚(对苯)(PPP)低聚物,被命名为n- pp,作为氢钝化的最窄扶手椅石墨烯纳米带的有限尺寸模型。利用Kohn-Sham密度泛函理论和时变密度泛函理论计算了n-PP的单重态-三重态能隙、垂直电离势、垂直电子亲和、基态隙、光学隙和激子结合能。n-PP的基态在研究的所有链长中均为单线态。与最低单重态(即基态)相比,n-PP的最低三重态以及正离子和阴离子的基态表现出一些多参考特征。总的来说,从omegaB97和omegaB97X官能团获得的n-PP的电子和光学性质与现有的实验数据非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic and Optical Properties of the Narrowest Armchair Graphene Nanoribbons Studied by Density Functional Methods
In the present study, a series of planar poly(p-phenylene) (PPP) oligomers with n phenyl rings (n = 1 - 20), designated as n-PP, are taken as finite-size models of the narrowest armchair graphene nanoribbons with hydrogen passivation. The singlet-triplet energy gap, vertical ionization potential, vertical electron affinity, fundamental gap, optical gap, and exciton binding energy of n-PP are calculated using Kohn-Sham density functional theory and time-dependent density functional theory with various exchange-correlation density functionals. The ground state of n-PP is shown to be singlet for all the chain lengths studied. In contrast to the lowest singlet state (i.e., the ground state), the lowest triplet state and the ground states of the cation and anion of n-PP are found to exhibit some multi-reference character. Overall, the electronic and optical properties of n-PP obtained from the omegaB97 and omegaB97X functionals are in excellent agreement with the available experimental data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flexible model of water based on the dielectric and electromagnetic spectrum properties : TIP4P/$\epsilon$ Flex. Characterization of a Modular Flow Cell System for Electrocatalytic Experiments and Comparison to a Commercial RRDE System Predicting Gas-Particle Partitioning Coefficients of Atmospheric Molecules with Machine Learning Electron-stimulated desorption from molecular ices in the 0.15–2 keV regime (15‐crown‐5)BiI 3 as a Building Block for Halogen Bonded Supramolecular Aggregates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1