{"title":"不同HVAC配置下城市客车空气传播的计算流体动力学仿真","authors":"D. Ramajo, S. Corzo","doi":"10.1177/00375497221151168","DOIUrl":null,"url":null,"abstract":"The HVAC systems in closed buses promote high particle spread. Lagrangian particle tracking simulations were carried out to evaluate airborne COVID transmission through droplets emitted by sneezing while Eulerian simulations were performed to account for the spread of aerosols emitted by breathing. The position of passengers as well as the effect of three HVAC configurations were evaluated. On one hand, it was concluded that large droplets can travel more than 3 m without being significantly affected by the inflow conditions, but small droplets are easily dispersed by the airflow, and many of them are captured by the HVAC systems. On the other hand, the HVAC systems quickly spreads aerosols along the whole of the bus, increasing the average risk for all passengers, but sensibly reducing the high local risks observed under motionless inflow conditions. The transmission risk was calculated by applying the Wells-Riley model, concluding that the transmission risk for a 20-min trip could remain below 0.5% if HVAC configurations with many inlet/outlet vents are implemented, and the passengers remain in silence and wear face masks.","PeriodicalId":49516,"journal":{"name":"Simulation-Transactions of the Society for Modeling and Simulation International","volume":"60 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational fluid dynamics simulation of airborne COVID transmission in urban bus with different HVAC configurations\",\"authors\":\"D. Ramajo, S. Corzo\",\"doi\":\"10.1177/00375497221151168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The HVAC systems in closed buses promote high particle spread. Lagrangian particle tracking simulations were carried out to evaluate airborne COVID transmission through droplets emitted by sneezing while Eulerian simulations were performed to account for the spread of aerosols emitted by breathing. The position of passengers as well as the effect of three HVAC configurations were evaluated. On one hand, it was concluded that large droplets can travel more than 3 m without being significantly affected by the inflow conditions, but small droplets are easily dispersed by the airflow, and many of them are captured by the HVAC systems. On the other hand, the HVAC systems quickly spreads aerosols along the whole of the bus, increasing the average risk for all passengers, but sensibly reducing the high local risks observed under motionless inflow conditions. The transmission risk was calculated by applying the Wells-Riley model, concluding that the transmission risk for a 20-min trip could remain below 0.5% if HVAC configurations with many inlet/outlet vents are implemented, and the passengers remain in silence and wear face masks.\",\"PeriodicalId\":49516,\"journal\":{\"name\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation-Transactions of the Society for Modeling and Simulation International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/00375497221151168\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation-Transactions of the Society for Modeling and Simulation International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/00375497221151168","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Computational fluid dynamics simulation of airborne COVID transmission in urban bus with different HVAC configurations
The HVAC systems in closed buses promote high particle spread. Lagrangian particle tracking simulations were carried out to evaluate airborne COVID transmission through droplets emitted by sneezing while Eulerian simulations were performed to account for the spread of aerosols emitted by breathing. The position of passengers as well as the effect of three HVAC configurations were evaluated. On one hand, it was concluded that large droplets can travel more than 3 m without being significantly affected by the inflow conditions, but small droplets are easily dispersed by the airflow, and many of them are captured by the HVAC systems. On the other hand, the HVAC systems quickly spreads aerosols along the whole of the bus, increasing the average risk for all passengers, but sensibly reducing the high local risks observed under motionless inflow conditions. The transmission risk was calculated by applying the Wells-Riley model, concluding that the transmission risk for a 20-min trip could remain below 0.5% if HVAC configurations with many inlet/outlet vents are implemented, and the passengers remain in silence and wear face masks.
期刊介绍:
SIMULATION is a peer-reviewed journal, which covers subjects including the modelling and simulation of: computer networking and communications, high performance computers, real-time systems, mobile and intelligent agents, simulation software, and language design, system engineering and design, aerospace, traffic systems, microelectronics, robotics, mechatronics, and air traffic and chemistry, physics, biology, medicine, biomedicine, sociology, and cognition.