{"title":"基于输出反馈控制的非线性摩擦和输入饱和线性执行器定位控制","authors":"Nan Wang, Jinyong Yu, Weiyang Lin","doi":"10.1002/cplx.21797","DOIUrl":null,"url":null,"abstract":"This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding-mode-based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti-windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity, 2016","PeriodicalId":72654,"journal":{"name":"Complex psychiatry","volume":"22 1","pages":"191-200"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Positioning control for a linear actuator with nonlinear friction and input saturation using output-feedback control\",\"authors\":\"Nan Wang, Jinyong Yu, Weiyang Lin\",\"doi\":\"10.1002/cplx.21797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding-mode-based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti-windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity, 2016\",\"PeriodicalId\":72654,\"journal\":{\"name\":\"Complex psychiatry\",\"volume\":\"22 1\",\"pages\":\"191-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex psychiatry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/cplx.21797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex psychiatry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cplx.21797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Positioning control for a linear actuator with nonlinear friction and input saturation using output-feedback control
This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding-mode-based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti-windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity, 2016