{"title":"多孔基板影响薄膜复合纳滤膜的污染倾向","authors":"Chenyue Wu, Li Long, Zhe Yang, Chuyang Y. Tang","doi":"10.1016/j.memlet.2022.100036","DOIUrl":null,"url":null,"abstract":"<div><p>Fouling is a critical consideration for the design of thin-film composite (TFC) nanofiltration membranes. Traditional wisdom believes that fouling propensity is primarily dictated by membrane surface properties while porous substrates play little role (on the basis on the latter have no effect on the foulant-membrane interaction). Nevertheless, porous substrates can regulate the water transport pathways, resulting in uneven water flux distribution over the membrane surface. For the first time, we experimentally investigated the micro-scale water flux distribution for nanofiltration membranes with different substrate porosities and the impact of such flux distribution pattern on fouling. With gold nanoparticles as tracers, we demonstrated more evenly distributed water flux at increasing substrate porosity. This was found to effectively alleviate membrane fouling by eliminating localized hot spots of high flux. Furthermore, higher substrate porosity also effectively enhanced the membrane water permeance due to the optimized water transport pathways. Our study reveals the fundamental relationship between the micro-scale transport behavior and the membrane fouling propensity, which provides a firm basis for the rational design of TFC membranes toward better separation performance.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":"2 2","pages":"Article 100036"},"PeriodicalIF":4.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242122200023X/pdfft?md5=a57c70b8568a4633a9d5756b1a50855d&pid=1-s2.0-S277242122200023X-main.pdf","citationCount":"7","resultStr":"{\"title\":\"Porous substrate affects fouling propensity of thin-film composite nanofiltration membranes\",\"authors\":\"Chenyue Wu, Li Long, Zhe Yang, Chuyang Y. Tang\",\"doi\":\"10.1016/j.memlet.2022.100036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fouling is a critical consideration for the design of thin-film composite (TFC) nanofiltration membranes. Traditional wisdom believes that fouling propensity is primarily dictated by membrane surface properties while porous substrates play little role (on the basis on the latter have no effect on the foulant-membrane interaction). Nevertheless, porous substrates can regulate the water transport pathways, resulting in uneven water flux distribution over the membrane surface. For the first time, we experimentally investigated the micro-scale water flux distribution for nanofiltration membranes with different substrate porosities and the impact of such flux distribution pattern on fouling. With gold nanoparticles as tracers, we demonstrated more evenly distributed water flux at increasing substrate porosity. This was found to effectively alleviate membrane fouling by eliminating localized hot spots of high flux. Furthermore, higher substrate porosity also effectively enhanced the membrane water permeance due to the optimized water transport pathways. Our study reveals the fundamental relationship between the micro-scale transport behavior and the membrane fouling propensity, which provides a firm basis for the rational design of TFC membranes toward better separation performance.</p></div>\",\"PeriodicalId\":100805,\"journal\":{\"name\":\"Journal of Membrane Science Letters\",\"volume\":\"2 2\",\"pages\":\"Article 100036\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277242122200023X/pdfft?md5=a57c70b8568a4633a9d5756b1a50855d&pid=1-s2.0-S277242122200023X-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277242122200023X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242122200023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Porous substrate affects fouling propensity of thin-film composite nanofiltration membranes
Fouling is a critical consideration for the design of thin-film composite (TFC) nanofiltration membranes. Traditional wisdom believes that fouling propensity is primarily dictated by membrane surface properties while porous substrates play little role (on the basis on the latter have no effect on the foulant-membrane interaction). Nevertheless, porous substrates can regulate the water transport pathways, resulting in uneven water flux distribution over the membrane surface. For the first time, we experimentally investigated the micro-scale water flux distribution for nanofiltration membranes with different substrate porosities and the impact of such flux distribution pattern on fouling. With gold nanoparticles as tracers, we demonstrated more evenly distributed water flux at increasing substrate porosity. This was found to effectively alleviate membrane fouling by eliminating localized hot spots of high flux. Furthermore, higher substrate porosity also effectively enhanced the membrane water permeance due to the optimized water transport pathways. Our study reveals the fundamental relationship between the micro-scale transport behavior and the membrane fouling propensity, which provides a firm basis for the rational design of TFC membranes toward better separation performance.