爆炸瞬变的强引力透镜效应

IF 19 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Reports on Progress in Physics Pub Date : 2019-07-16 DOI:10.1088/1361-6633/ab4fc5
M. Oguri
{"title":"爆炸瞬变的强引力透镜效应","authors":"M. Oguri","doi":"10.1088/1361-6633/ab4fc5","DOIUrl":null,"url":null,"abstract":"Recent rapid progress in time domain surveys makes it possible to detect various types of explosive transients in the Universe in large numbers, some of which will be gravitationally lensed into multiple images. Although a large number of strongly lensed distant galaxies and quasars have already been discovered, strong lensing of explosive transients opens up new applications, including improved measurements of cosmological parameters, powerful probes of small scale structure of the Universe, and new observational tests of dark matter scenarios, thanks to their rapidly evolving light curves as well as their compact sizes. In particular, compact sizes of emitting regions of these transient events indicate that wave optics effects play an important role in some cases, which can lead to totally new applications of these lensing events. Recently we have witnessed first discoveries of strongly lensed supernovae, and strong lensing events of other types of explosive transients such as gamma-ray bursts, fast radio bursts, and gravitational waves from compact binary mergers are expected to be observed soon. In this review article, we summarize the current state of research on strong gravitational lensing of explosive transients and discuss future prospects.","PeriodicalId":21110,"journal":{"name":"Reports on Progress in Physics","volume":null,"pages":null},"PeriodicalIF":19.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Strong gravitational lensing of explosive transients\",\"authors\":\"M. Oguri\",\"doi\":\"10.1088/1361-6633/ab4fc5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent rapid progress in time domain surveys makes it possible to detect various types of explosive transients in the Universe in large numbers, some of which will be gravitationally lensed into multiple images. Although a large number of strongly lensed distant galaxies and quasars have already been discovered, strong lensing of explosive transients opens up new applications, including improved measurements of cosmological parameters, powerful probes of small scale structure of the Universe, and new observational tests of dark matter scenarios, thanks to their rapidly evolving light curves as well as their compact sizes. In particular, compact sizes of emitting regions of these transient events indicate that wave optics effects play an important role in some cases, which can lead to totally new applications of these lensing events. Recently we have witnessed first discoveries of strongly lensed supernovae, and strong lensing events of other types of explosive transients such as gamma-ray bursts, fast radio bursts, and gravitational waves from compact binary mergers are expected to be observed soon. In this review article, we summarize the current state of research on strong gravitational lensing of explosive transients and discuss future prospects.\",\"PeriodicalId\":21110,\"journal\":{\"name\":\"Reports on Progress in Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on Progress in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/ab4fc5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Progress in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6633/ab4fc5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 74

摘要

近年来,时域巡天技术的快速发展使大量探测宇宙中各种类型的瞬变爆炸成为可能,其中一些将被引力透镜透镜成多幅图像。虽然已经发现了大量的强透镜遥远星系和类星体,但爆炸瞬态的强透镜打开了新的应用,包括改进的宇宙学参数测量,宇宙小尺度结构的强大探测器,以及暗物质场景的新观测测试,这要归功于它们快速演变的光曲线以及紧凑的尺寸。特别是,这些瞬态事件发射区域的紧凑尺寸表明,波光学效应在某些情况下起着重要作用,这可能导致这些透镜事件的全新应用。最近,我们目睹了强透镜超新星的首次发现,其他类型的爆炸瞬态的强透镜事件,如伽马射线暴、快速射电暴和紧凑双星合并产生的引力波,预计很快就会被观测到。本文综述了爆炸瞬态强引力透镜的研究现状,并对其发展前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strong gravitational lensing of explosive transients
Recent rapid progress in time domain surveys makes it possible to detect various types of explosive transients in the Universe in large numbers, some of which will be gravitationally lensed into multiple images. Although a large number of strongly lensed distant galaxies and quasars have already been discovered, strong lensing of explosive transients opens up new applications, including improved measurements of cosmological parameters, powerful probes of small scale structure of the Universe, and new observational tests of dark matter scenarios, thanks to their rapidly evolving light curves as well as their compact sizes. In particular, compact sizes of emitting regions of these transient events indicate that wave optics effects play an important role in some cases, which can lead to totally new applications of these lensing events. Recently we have witnessed first discoveries of strongly lensed supernovae, and strong lensing events of other types of explosive transients such as gamma-ray bursts, fast radio bursts, and gravitational waves from compact binary mergers are expected to be observed soon. In this review article, we summarize the current state of research on strong gravitational lensing of explosive transients and discuss future prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reports on Progress in Physics
Reports on Progress in Physics 物理-物理:综合
CiteScore
31.90
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Reports on Progress in Physics is a highly selective journal with a mission to publish ground-breaking new research and authoritative invited reviews of the highest quality and significance across all areas of physics and related areas. Articles must be essential reading for specialists, and likely to be of broader multidisciplinary interest with the expectation for long-term scientific impact and influence on the current state and/or future direction of a field.
期刊最新文献
Key Issues Review: Useful autonomous quantum machines. Recent developments in tornado theory and observations. A comprehensive review of quantum machine learning: from NISQ to fault tolerance. Physics and technology of Laser Lightning Control. Realization of chiral two-mode Lipkin-Meshkov-Glick models via acoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1